Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Rheology and Processing of Polymer Nanocomposites (eBook)

eBook Download: PDF
2016
John Wiley & Sons (Verlag)
978-1-118-96982-3 (ISBN)

Lese- und Medienproben

Rheology and Processing of Polymer Nanocomposites -
Systemvoraussetzungen
171,99 inkl. MwSt
(CHF 167,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Rheology and Processing of Polymer Nanocomposites examines the current state of the art and new challenges in the characterization of nanofiller/polymer interactions, nanofiller dispersion, distribution, filler-filler interactions and interfaces in polymer nanocomposites.

A one-stop reference resource for important research accomplishments in this area, it benefits academics, researchers, scientists, and engineers in the field of polymer nanocomposites in their daily work.



Prof. Sabu Thomas, Hon. Director,Center for Nanoscience and Nanotechnology, Director, School of Chamical Sciences, Mahatma Gandhi University, Kottayam Kerala, India

Prof. Dr. Rene Muller, Laboratoire d'Ingenierie des Polymeres pour l.es Hautes Technologies, Equipe d'Accueil Conventionnee 4379, Ecole Europeenne de Chimie, Polymeres et Materiaux, Universite de Strasbourg, Strasbourg, France.

Jiji Abraham, Research Scholar, Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam Kerala, India.


Rheology and Processing of Polymer Nanocomposites examines the current state of the art and new challenges in the characterization of nanofiller/polymer interactions, nanofiller dispersion, distribution, filler-filler interactions and interfaces in polymer nanocomposites. A one-stop reference resource for important research accomplishments in this area, it benefits academics, researchers, scientists, and engineers in the field of polymer nanocomposites in their daily work.

Prof. Sabu Thomas, Hon. Director,Center for Nanoscience and Nanotechnology, Director, School of Chamical Sciences, Mahatma Gandhi University, Kottayam Kerala, India Prof. Dr. Rene Muller, Laboratoire d'Ingenierie des Polymeres pour l.es Hautes Technologies, Equipe d'Accueil Conventionnee 4379, Ecole Europeenne de Chimie, Polymeres et Materiaux, Universite de Strasbourg, Strasbourg, France. Jiji Abraham, Research Scholar, Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam Kerala, India.

Cover 1
Title Page 5
Copyright 6
Contents 7
List of Contributors 15
Chapter 1 Materials for Polymer Nanocomposites 19
1.1 Introduction 19
1.2 Nanocomposite Framework 21
1.2.1 Nanoscale Fillers 21
1.2.2 Choice of Polymeric Matrices 31
1.3 Recent Developments and Opportunities in the Area of Polymer Nanocomposites 34
1.4 Challenges in the Area of Polymer Nanocomposites 35
1.5 Relationships of Macroscopic Rheological Properties to Nanoscale Structural Variables 36
1.6 Conclusion 37
Acknowledgments 38
References 38
Chapter 2 Manufacturing Polymer Nanocomposites 47
2.1 Introduction 47
2.2 Nanofillers 48
2.2.1 Structure and Properties of Clay 49
2.2.2 Structure and Properties of Organically Modified Clay 50
2.2.3 Structure and Properties of CNTs 51
2.3 Polymer Matrices 54
2.4 Preparation of Nanocomposites 55
2.4.1 In Situ Polymerization 55
2.4.2 Solution Blending 57
2.4.3 Melt Compounding 60
2.4.4 Other Methods 72
2.4.5 Supercritical CO2 Assisted Compounding 73
2.5 Characterization 76
2.6 Conclusions 78
References 79
Chapter 3 Rheology and Processing of Polymer Nanocomposites: Theory, Practice, and New Challenges 87
3.1 Introduction 87
3.2 Viscoelasticity of Nanocomposites 90
3.2.1 General Trends 90
3.2.2 Percolation Treshold 93
3.2.3 Equilibrium Shear Modulus 96
3.2.4 Validity of TTS Principle 99
3.2.5 Quantifying Dispersion via Melt Rheology 101
3.2.6 Payne Effect 105
3.3 Flow Properties of Nanocomposites 110
3.3.1 Steady-State Flow Curves: Relative Viscosity and Normal Stress Difference 111
3.3.2 Flow-Induced Structure in Nanocomposites 115
3.3.3 Elongational Flow 117
3.4 Theory and Modeling of Nanocomposites Rheology 121
3.4.1 Steady-State Viscosity 122
3.4.2 Dynamic Rheology 123
3.4.3 Elongational Rheology 127
3.4.4 Payne Effect 131
3.5 Processing of Nanocomposites 137
3.5.1 Influence of Blending Procedure 137
3.5.2 Usual Processing Methods 139
3.5.3 New Processing Routes 142
3.6 Conclusion and Futures Challenges 143
Acknowledgments 145
References 145
Chapter 4 Mixing of Polymers Using the Elongational Flow Mixer (RMX®) 153
4.1 Introduction 153
4.2 Polymer Blends 154
4.2.1 Capillary Number, Ca 156
4.2.2 Rheology and Processing of Polymer Blends 160
4.3 Polymer Nanocomposites 165
4.3.1 Dispersion of Solid Additives 166
4.4 Elongational Flow Mixer (RMX®) 169
4.4.1 RMX® Assembly and Operating Principles 170
4.4.2 RMX® Flow Analysis by Numeric Simulation 173
4.4.3 Estimation of Rheological Parameters in the RMX® via Capillary Rheometry 174
4.5 RMX® Mixing of Polymer Blends 176
4.5.1 Influence of the RMX® Parameters on Mixing 177
4.5.2 Influence of the Viscosity Ratio, p 183
4.5.3 Energy of Mixing: Performance Comparison 186
4.5.4 Viscous Heating 188
4.5.5 Effect of a Compatibilizer 188
4.5.6 Rheology/Morphology Relationship 190
4.6 Mixing of Polymer Nanocomposites 191
4.7 Concluding Remarks 200
References 200
Chapter 5 Rheology and Processing of Polymer/Layered Silicate Nanocomposites 205
5.1 Introduction 205
5.2 Nanostructure Development 207
5.2.1 Melt Intercalation 207
5.2.2 Interlayer Structure of OMLFs and Intercalation 208
5.3 Novel Compounding Methods for Delamination of OMLFs 217
5.3.1 Solid-State Shear Processing 218
5.4 Nanostructure and Rheological Properties 220
5.4.1 Flocculation Control and Modulus Enhancement 220
5.4.2 Linear Viscoelastic Properties 223
5.4.3 Relaxation Rate and Crystallization 228
5.4.4 Nonlinear Shear Response 231
5.4.5 Analogy to Soft Colloids 232
5.4.6 Reversibility of Network Formation Process 233
5.4.7 Alignment of Silicate Layers in Networks 236
5.5 Nanocomposite Foams 240
5.5.1 Foam Processing Using Supercritical CO2 240
5.5.2 PLA-Based Nanocomposite Foams 242
5.5.3 Polyethylene Ionomer-Based Nanocomposite Foams by MuCell® Injection Molding 245
5.6 Future Prospects 248
References 248
Chapter 6 Processing and Rheological Behaviors of CNT/Polymer Nanocomposites 253
6.1 Introduction 253
6.2 Processing Techniques of Polymer/CNT Nanocomposites 255
6.2.1 Solution Processing 256
6.2.2 Dry Powder, Wet, and Partial Solution Mixing 259
6.2.3 In Situ Polymerization 260
6.2.4 Melt Blending 267
6.3 Rheological Properties of Polymer/Carbon Nanotube Composites 272
6.3.1 Dilute Regime 272
6.3.2 Semidilute Regime 273
6.4 Summary 292
Acknowledgment 292
References 292
Chapter 7 Unusual Phase Separation in PS Rich Blends with PVME in Presence of MWNTs 297
7.1 Introduction 297
7.2 Experimental Methods 298
7.2.1 Materials and Sample Preparation 298
7.2.2 Characterization 299
7.3 Theory Background 299
7.4 Results and Discussion 302
7.4.1 Rheologically Determined Demixing Temperature 302
7.4.2 Evolution of Morphology in the Blends in Presence of MWNTs 304
7.5 Conclusions 309
Acknowledgements 309
References 309
Chapter 8 Rheology and Processing of Polymer/POSS Nanocomposites 311
8.1 Introduction 311
8.2 Polyhedral Oligomeric Silsesquioxanes 314
8.2.1 General Interactions between Polymer Matrices and POSS Particles 315
8.3 Processing of Polymer/POSS Nanocomposites 317
8.3.1 Polyolefin/POSS Nanocomposites 317
8.3.2 Polyamide/POSS Nanocomposites 324
8.3.3 Polyurethane/POSS Nanocomposites 327
8.3.4 Other Polymer/POSS Nanocomposites 328
8.4 Rheological Behavior of POSS-Based Polymer Nanocomposites 332
8.5 Conclusions 336
Acknowledgments 338
References 338
Chapter 9 Polymer and Composite Nanofiber: Electrospinning Parameters and Rheology Properties 347
9.1 Introduction 347
9.2 Electrospinning 349
9.3 Electrospinning Process Parameters 351
9.3.1 Solution Properties 351
9.3.2 Operating Conditions 353
9.3.3 Process Conditions 354
9.4 Polymer-Based Nanofiber and its Rheology 355
9.5 Nanofiber and its Polymer Composites 366
9.6 Conclusion 369
References 369
Chapter 10 Rheology and Processing of Inorganic Nanomaterials and Quantum Dots/Polymer Nanocomposites 373
10.1 Inorganic Nanoparticle Filled Polymer Nanocomposites 374
10.2 Fabrication of Inorganic Nanoparticle Filled Polymer Nanocomposites 374
10.3 Why Rheological Study is Important for Polymer Nanocomposites 375
10.3.1 Assessment of the Dispersion Quality 376
10.3.2 Assessment of Processability 376
10.3.3 Assessment of Correlation between Molecular Structure and Dynamics of Polymers (Structure-Property Relationship) 377
10.4 Rheology of Quantum Dot Based Polymer Nanocomposites 377
10.5 Metal Oxide Nanoparticle-Based Polymer Nanocomposites 384
10.5.1 Alumina 384
10.5.2 Silica 386
10.5.3 Titania 390
10.5.4 Zinc Oxide 394
10.5.5 Ferrite Nanoparticles 394
10.5.6 Calcium Carbonate 395
10.6 Conclusion 397
References 397
Chapter 11 Rheology and Processing of Laponite/Polymer Nanocomposites 401
11.1 Introduction 401
11.2 Rheology 402
11.2.1 Linear Viscoelastic Properties 402
11.2.2 Nonlinear Viscoelastic Properties 405
11.3 Processing 406
11.3.1 Melt Blending 407
11.3.2 Solution Blending 408
11.3.3 In Situ Polymerization 410
11.4 Conclusions and Outlook 417
Acknowledgement 418
References 418
Chapter 12 Graphene-Based Nanocomposites: Mechanical, Thermal, Electrical, and Rheological Properties 423
12.1 Introduction 423
12.2 Graphene 425
12.3 The Use of Graphene in Nanocomposite Materials 426
12.3.1 Problematic 428
12.3.2 Manufacturing Technique of Graphene-Based Nanocomposites 429
12.4 Nanocomposite Characterization 430
12.4.1 Structural Properties of Graphene Nanocomposites 430
12.4.2 Thermal Stability 432
12.4.3 Crystallization and Melting Properties 434
12.4.4 Mechanical Properties 436
12.4.5 Rheological Properties 439
12.4.6 Electrical Properties 441
12.5 Conclusion 443
12.6 Future Perspective 443
References 444
Chapter 13 Processing, Rheology, and Electrical Properties of Polymer/Nanocarbon Black Composites 449
13.1 Introduction 449
13.2 Experimental 453
13.2.1 Sample Preparation 453
13.2.2 Characterization Techniques 454
13.3 Electrical Properties of Carbon Black Composites and Applications 455
13.3.1 DC Conductivity 455
13.3.2 AC Conductivity 458
13.3.3 Positive Temperature Coefficient in Resistivity 462
13.4 Conclusion 465
References 465
Chapter 14 Rheology and Processing of Nanocellulose, Nanochitin, and Nanostarch/Polymer Bionanocomposites 471
14.1 Introduction 471
14.2 Biopolymers as Nanofillers for Polymer/Nanocomposites 473
14.2.1 Nanocellulose 473
14.2.2 Processing of Nanocellulose/Polymer Nanocomposites 474
14.2.3 Nanochitin 477
14.2.4 Processing of Nanochitin/Polymer Nanocomposites 477
14.2.5 Nanostarch 494
14.2.6 Processing of Nanostarch/Polymer Nanocomposites 495
14.3 Potential Applications of Polysaccharide Nanofillers/Polymer Nanocomposites 496
14.4 Conclusions and Future Perspectives 499
References 500
Chapter 15 Rheology and Processing of Nanoparticle Filled Polymer Blend Nanocomposites 509
15.1 Rheology of Polymer Blends 509
15.1.1 Miscible Blends 509
15.1.2 Immiscible Blends 513
15.1.3 Partially Miscible Blends 520
15.2 Effect of Nanoparticles on the Morphology of Polymer Blend 527
15.2.1 Selective Distribution 528
15.2.2 Phase Separation 541
15.3 Rheology of Nanoparticles Filled Polymer Blend 549
15.3.1 Viscoelasticity of Partially Miscible Systems 549
15.3.2 Viscoelasticity of Polymer Blend Nanocomposites 553
15.4 Summary 558
References 559
Chapter 16 Rheology as a Tool for Studying In Situ Polymerized Carbon Nanotube Nanocomposites 569
16.1 Introduction 569
16.2 Basic Principles of Rheokinetics 570
16.2.1 Systemic Rheology: Couette Analogy/Mixer-Type Rheology 570
16.2.2 A Couette-Type Rheoreactor for the Kinetics of In Situ Polymerization 576
16.3 Rheokinetics of In Situ Polymerization of Carbon Nanotube/Monomer Systems 578
16.3.1 Effects of the Presence of MWCNT on the Polymerization Kinetics 578
16.3.2 Effect of the State of Dispersion of Carbon Nanotubes on the Polymerization Kinetics 581
16.3.3 Inhibiting Effect of the MWCNT on the Polymerization Kinetics 582
16.4 Rheological Percolation Threshold of Carbon Nanotube-Based Nanocomposites 585
16.4.1 Experimental Procedures 585
16.4.2 Percolation Threshold Observed by Mechanical Spectroscopy 586
16.4.3 Electrical Percolation Threshold 594
16.4.4 Determination of the Percolation Threshold by Mechanical Spectroscopy 594
16.4.5 Electrical versus Rheological Percolations 596
16.5 Concluding Remarks 599
References 599
Index 605
EULA 619

Erscheint lt. Verlag 25.8.2016
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
Schlagworte area • challenges • Composites • contributors • List • Macroscopic • Materials • Materials Science • Materialwissenschaften • Muller • Nanocomposites • nanoscale • Nanotechnologie • nanotechnology • Opportunities • Polymer • Polymer processing • Polymer Science & Technology • Polymerverarbeitung • Polymerwissenschaft u. -technologie • Properties • relationships • rheological • Structural • Variables • Verbundwerkstoffe
ISBN-10 1-118-96982-0 / 1118969820
ISBN-13 978-1-118-96982-3 / 9781118969823
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Gefüge von Metallen, Keramiken und Verbunden

von Heinrich Oettel; Gaby Ketzer-Raichle

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 95,70