Chemical Process Design and Integration (eBook)
John Wiley & Sons (Verlag)
978-1-118-69909-6 (ISBN)
Professor Robin Smith is Head of the Centre for Process Integration at the University of Manchester Institute of Science and Technology (UMIST) in the United Kingdom. Before joining UMIST he had extensive industrial experience with Rohm & Haas in process investigation and process design, and with ICI in computer-aided design and process integration. He was a member of the ICI Process Integration Team that pioneered the first industrial applications of process integration design methods. Since joining UMIST he has acted extensively as a consultant in process integration projects. He has published widely in the field of chemical process design and integration, and is a Fellow of the Royal Academy of Engineering, a Fellow of the Institution of Chemical Engineers in the UK and a chartered engineer. In 1992 he was awarded the Hanson Medal of the Institution of Chemical Engineers in the UK for his work on clean process technology.
Written by a highly regarded author with industrial and academic experience, this new edition of an established bestselling book provides practical guidance for students, researchers, and those in chemical engineering. The book includes a new section on sustainable energy, with sections on carbon capture and sequestration, as a result of increasing environmental awareness; and a companion website that includes problems, worked solutions, and Excel spreadsheets to enable students to carry out complex calculations.
Professor Robin Smith is Head of the Centre for Process Integration at the University of Manchester Institute of Science and Technology (UMIST) in the United Kingdom. Before joining UMIST he had extensive industrial experience with Rohm & Haas in process investigation and process design, and with ICI in computer-aided design and process integration. He was a member of the ICI Process Integration Team that pioneered the first industrial applications of process integration design methods. Since joining UMIST he has acted extensively as a consultant in process integration projects. He has published widely in the field of chemical process design and integration, and is a Fellow of the Royal Academy of Engineering, a Fellow of the Institution of Chemical Engineers in the UK and a chartered engineer. In 1992 he was awarded the Hanson Medal of the Institution of Chemical Engineers in the UK for his work on clean process technology.
Title Page 5
Copyright Page 6
Contents 9
Preface to the Second Edition 211
Acknowledgements 887
Nomenclature 837
Chapter 1: The Nature of Chemical Process Design and Integration 27
1.1 Chemical Products 27
1.2 Formulation of Design Problems 29
1.3 Synthesis and Simulation 30
1.4 The Hierarchy of Chemical Process Design and Integration 32
1.5 Continuous and Batch Processes 34
1.6 New Design and Retrofit 37
1.7 Reliability, Availability and Maintainability 37
1.8 Process Control 38
1.9 Approaches to Chemical Process Design and Integration 39
1.10 The Nature of Chemical Process Design and Integration – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 42
References 43
Chapter 2: Process Economics 603
2.1 The Role of Process Economics 45
2.2 Capital Cost for New Design 45
2.3 Capital Cost for Retrofit 51
2.4 Annualized Capital Cost 52
2.5 Operating Cost 53
2.6 Simple Economic Criteria 56
2.7 Project Cash Flow and Economic Evaluation 57
2.8 Investment Criteria 59
2.9 Process Economics – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 60
2.10 Exercises 60
References 62
Chapter 3: Optimization 603
3.1 Objective Functions 63
3.2 Single–Variable Optimization???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 66
3.3 Multivariable Optimization 68
3.4 Constrained Optimization 71
3.5 Linear Programming 73
3.6 Nonlinear Programming 75
3.7 Structural Optimization 76
3.8 Solution of Equations Using Optimization 80
3.9 The Search for Global Optimality 81
3.10 Optimization – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 82
3.11 Exercises 82
References 84
Chapter 4: Chemical Reactors I – Reactor Performance???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 589
4.1 Reaction Path 85
4.2 Types of Reaction Systems 87
4.3 Measures of Reactor Performance 89
4.4 Rate of Reaction 90
4.5 Idealized Reactor Models 91
4.6 Choice of Idealized Reactor Model 99
4.7 Choice of Reactor Performance 102
4.8 Reactor Performance – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 103
4.9 Exercises 104
References 105
Chapter 5: Chemical Reactors II – Reactor Conditions???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 107
5.1 Reaction Equilibrium 107
5.2 Reactor Temperature 111
5.3 Reactor Pressure 118
5.4 Reactor Phase 119
5.5 Reactor Concentration 120
5.6 Biochemical Reactions 125
5.7 Catalysts 125
5.8 Reactor Conditions – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 128
5.9 Exercises 129
References 131
Chapter 6: Chemical Reactors III – Reactor Configuration???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 133
6.1 Temperature Control 133
6.2 Catalyst Degradation 137
6.3 Gas–Liquid and Liquid–Liquid Reactors?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 138
6.4 Reactor Configuration 142
6.5 Reactor Configuration For Heterogeneous Solid-Catalyzed Reactions 147
6.6 Reactor Configuration Summary 148
6.7 Exercises 148
References 149
Chapter 7: Separation of Heterogeneous Mixtures 151
7.1 Homogeneous and Heterogeneous Separation 151
7.2 Settling and Sedimentation 152
7.3 Inertial and Centrifugal Separation 156
7.4 Electrostatic Precipitation 157
7.5 Filtration 159
7.6 Scrubbing 160
7.7 Flotation 161
7.8 Drying 162
7.9 Separation of Heterogeneous Mixtures – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 163
7.10 Exercises 163
References 164
Chapter 8: Separation of Homogeneous Fluid Mixtures I – Distillation???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 713
8.1 Vapor–Liquid Equilibrium???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 165
8.2 Calculation of Vapor-Liquid Equilibrium 167
8.3 Single-Stage Separation 172
8.4 Distillation 172
8.5 Binary Distillation 176
8.6 Total and Minimum Reflux Conditions for Multicomponent Mixtures 181
8.7 Finite Reflux Conditions for Multicomponent Mixtures 188
8.8 Column Dimensions 190
8.9 Conceptual Design of Distillation 200
8.10 Detailed Design of Distillation 202
8.11 Limitations of Distillation 205
8.12 Separation of Homogeneous Fluid Mixtures by Distillation – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 206
8.13 Exercises 206
References 209
Chapter 9: Separation of Homogeneous Fluid Mixtures II – Other Methods???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 211
9.1 Absorption and Stripping 211
9.2 Liquid–Liquid Extraction???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 215
9.3 Adsorption 222
9.4 Membranes 225
9.5 Crystallization 237
9.6 Evaporation 241
9.7 Separation of Homogeneous Fluid Mixtures by Other Methods – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 243
9.8 Exercises 243
References 245
Chapter 10: Distillation Sequencing 247
10.1 Distillation Sequencing using Simple Columns 247
10.2 Practical Constraints Restricting Options 247
10.3 Choice of Sequence for Simple Nonintegrated Distillation Columns 248
10.4 Distillation Sequencing using Columns With More Than Two Products 255
10.5 Distillation Sequencing using Thermal Coupling 257
10.6 Retrofit of Distillation Sequences 262
10.7 Crude Oil Distillation 263
10.8 Structural Optimization of Distillation Sequences 265
10.9 Distillation Sequencing – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 268
10.10 Exercises 268
References 271
Chapter 11: Distillation Sequencing for Azeotropic Distillation 891
11.1 Azeotropic Systems 273
11.2 Change in Pressure 273
11.3 Representation of Azeotropic Distillation 274
11.4 Distillation at Total Reflux Conditions 276
11.5 Distillation at Minimum Reflux Conditions 281
11.6 Distillation at Finite Reflux Conditions 282
11.7 Distillation Sequencing Using an Entrainer 285
11.8 Heterogeneous Azeotropic Distillation 290
11.9 Entrainer Selection 293
11.10 Multicomponent Systems 296
11.11 Trade-Offs in Azeotropic Distillation 296
11.12 Membrane Separation 296
11.13 Distillation Sequencing for Azeotropic Distillation – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 297
11.14 Exercises 298
References 299
Chapter 12: Heat Exchange 301
12.1 Overall Heat Transfer Coefficients 301
12.2 Heat Exchanger Fouling 305
12.3 Temperature Differences in Shell-and-Tube Heat Exchangers 307
12.4 Heat Exchanger Geometry 314
12.5 Allocation of Fluids in Shell-and-Tube Heat Exchangers 320
12.6 Heat Transfer Coefficients and Pressure Drops in Shell-and-Tube Heat Exchangers 320
12.7 Rating and Simulation of Heat Exchangers 327
12.8 Heat Transfer Enhancement 333
12.9 Retrofit of Heat Exchangers 339
12.10 Condensers 342
12.11 Reboilers and Vaporizers 347
12.12 Other Types of Heat Exchangers 352
12.13 Fired Heaters 354
12.14 Heat Exchange – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 371
12.15 Exercises 372
References 374
Chapter 13: Pumping and Compression 375
13.1 Pressure Drops in Process Operations 375
13.2 Pressure Drops in Piping Systems 375
13.3 Pump Types 381
13.4 Centrifugal Pump Performance 382
13.5 Compressor Types 389
13.6 Reciprocating Compressors 392
13.7 Dynamic Compressors 393
13.8 Staged Compression 395
13.9 Compressor Performance 396
13.10 Process Expanders 398
13.11 Pumping and Compression – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 400
13.12 Exercises 400
References 401
Chapter 14: Continuous Process Recycle Structure 887
14.1 The Function of Process Recycles 403
14.2 Recycles with Purges 408
14.3 Hybrid Reaction and Separation 411
14.4 The Process Yield 412
14.5 Feed, Product and Intermediate Storage 414
14.6 Continuous Process Recycle Structure – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 415
14.7 Exercises 415
References 417
Chapter 15: Continuous Process Simulation and Optimization 419
15.1 Physical Property Models for Process Simulation 419
15.2 Unit Models for Process Simulation 420
15.3 Flowsheet Models 426
15.4 Simulation of Recycles 426
15.5 Convergence of Recycles 428
15.6 Design Specifications 434
15.7 Flowsheet Sequencing 434
15.8 Model Validation 434
15.9 Process Optimization 434
15.10 Continuous Process Simulation and Optimization – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 439
15.11 Exercises 439
References 442
Chapter 16: Batch Processes 887
16.1 Characteristics of Batch Processes 443
16.2 Batch Reactors 443
16.3 Batch Distillation 446
16.4 Batch Crystallization 457
16.5 Batch Filtration 458
16.6 Batch Heating and Cooling 459
16.7 Optimization of Batch Operations 462
16.8 Gantt Charts 468
16.9 Production Schedules for Single Products 468
16.10 Production Schedules for Multiple Products 470
16.11 Equipment Cleaning and Material Transfer 471
16.12 Synthesis of Reaction and Separation Systems for Batch Processes 472
16.13 Storage in Batch Processes 478
16.14 Batch Processes – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 478
16.15 Exercises 478
References 481
Chapter 17: Heat Exchanger Networks I – Network Targets?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 907
17.1 Composite Curves 483
17.2 The Heat Recovery Pinch 487
17.3 Threshold Problems 490
17.4 The Problem Table Algorithm 492
17.5 Non–global Minimum Temperature Differences?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 498
17.6 Process Constraints 499
17.7 Utility Selection 501
17.8 Furnaces 503
17.9 Cogeneration (Combined Heat and Power Generation) 506
17.10 Integration of Heat Pumps 511
17.11 Number of Heat Exchange Units 512
17.12 Heat Exchange Area Targets 515
17.13 Sensitivity of Targets 519
17.14 Capital and Total Cost Targets 519
17.15 Heat Exchanger Network Targets – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 522
17.16 Exercises 522
References 525
Chapter 18: Heat Exchanger Networks II – Network Design 133
18.1 The Pinch Design Method 527
18.2 Design for Threshold Problems 533
18.3 Stream Splitting 533
18.4 Design for Multiple Pinches 537
18.5 Remaining Problem Analysis 542
18.6 Simulation of Heat Exchanger Networks 544
18.7 Optimization of a Fixed Network Structure 546
18.8 Automated Methods of Heat Exchanger Network Design 549
18.9 Heat Exchanger Network Retrofit with a Fixed Network Structure 551
18.10 Heat Exchanger Network Retrofit through Structural Changes 556
18.11 Automated Methods of Heat Exchanger Network Retrofit 562
18.12 Heat Exchanger Network Design – Summary 564
18.13 Exercises 565
References 568
Chapter 19: Heat Exchanger Networks III – Stream Data 569
19.1 Process Changes for Heat Integration 569
19.2 The Trade–Offs Between Process Changes, Utility Selection, Energy Cost and Capital Cost???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 569
19.3 Data Extraction 570
19.4 Heat Exchanger Network Stream Data – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 577
19.5 Exercises 577
References 579
Chapter 20: Heat Integration of Reactors 581
20.1 The Heat Integration Characteristics of Reactors 581
20.2 Appropriate Placement of Reactors 583
20.3 Use of the Grand Composite Curve for Heat Integration of Reactors 584
20.4 Evolving Reactor Design to Improve Heat Integration 586
20.5 Heat Integration of Reactors – Summary 587
20.6 Exercises 587
Reference 587
Chapter 21: Heat Integration of Distillation 589
21.1 The Heat Integration Characteristics of Distillationƒ 589
21.2 The Appropriate Placement of Distillation 589
21.3 Use of the Grand Composite Curve for Heat Integration of Distillation 590
21.4 Evolving the Design of Simple Distillation Columns to Improve Heat Integration 590
21.5 Heat Pumping in Distillation 593
21.6 Capital Cost Considerations for the Integration of Distillation 593
21.7 Heat Integration Characteristics of Distillation Sequences 594
21.8 Design of Heat Integrated Distillation Sequences 597
21.9 Heat Integration of Distillation – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 598
21.10 Exercises 598
References 601
Chapter 22: Heat Integration of Evaporators and Dryers 603
22.1 The Heat Integration Characteristics of Evaporators 603
22.2 Appropriate Placement of Evaporators 603
22.3 Evolving Evaporator Design to Improve Heat Integration 603
22.4 The Heat Integration Characteristics of Dryers 605
22.5 Evolving Dryer Design to Improve Heat Integration 605
22.6 A Case Study 607
22.7 Heat Integration of Evaporators and Dryers – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 607
22.8 Exercises 608
References 608
Chapter 23: Steam Systems and Cogeneration 151
23.1 Boiler Feedwater Treatment 611
23.2 Steam Boilers 615
23.3 Gas Turbines 621
23.4 Steam Turbines 628
23.5 Steam Distribution 635
23.6 Site Composite Curves 638
23.7 Cogeneration Targets 649
23.8 Power Generation and Machine Drives 653
23.9 Utility Simulation 657
23.10 Optimizing Steam Systems 659
23.11 Steam Costs 664
23.12 Steam Systems and Cogeneration – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 667
23.13 Exercises 668
References 671
Chapter 24: Cooling and Refrigeration Systems 581
24.1 Cooling Systems 673
24.2 Once-Through Water Cooling 673
24.3 Recirculating Cooling Water Systems 673
24.4 Air Coolers 676
24.5 Refrigeration 682
24.6 Choice of a Single-Component Refrigerant for Compression Refrigeration 688
24.7 Targeting Refrigeration Power for Pure Component Compression Refrigeration 691
24.8 Heat Integration of Pure Component Compression Refrigeration Processes 695
24.9 Mixed Refrigerants for Compression Refrigeration 699
24.10 Expanders 703
24.11 Absorption Refrigeration 707
24.12 Indirect Refrigeration 708
24.13 Cooling Water and Refrigeration Systems – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 708
24.14 Exercises 709
References 711
Chapter 25: Environmental Design for Atmospheric Emissions 713
25.1 Atmospheric Pollution 713
25.2 Sources of Atmospheric Pollution 714
25.3 Control of Solid Particulate Emissions to Atmosphere 716
25.4 Control of VOC Emissions 716
25.5 Control of Sulfur Emissions 729
25.6 Control of Oxides of Nitrogen Emissions 734
25.7 Control of Combustion Emissions 737
25.8 Atmospheric Dispersion 740
25.9 Environmental Design for Atmospheric Emissions – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 742
25.10 Exercises 743
References 746
Chapter 26: Water System Design 747
26.1 Aqueous Contamination 750
26.2 Primary Treatment Processes 751
26.3 Biological Treatment Processes 755
26.4 Tertiary Treatment Processes 758
26.5 Water Use 759
26.6 Targeting for Maximum Water Reuse for Single Contaminants for Operations with Fixed Mass Loads 761
26.7 Design for Maximum Water Reuse for Single Contaminants for Operations with Fixed Mass Loads 763
26.8 Targeting for Maximum Water Reuse for Single Contaminants for Operations with Fixed Flowrates 773
26.9 Design for Maximum Water Reuse for Single Contaminants for Operations with Fixed Flowrates 777
26.10 Targeting and Design for Maximum Water Reuse Based on Optimization of a Superstructure 784
26.11 Process Changes for Reduced Water Consumption 786
26.12 Targeting for Minimum Wastewater Treatment Flowrate for Single Contaminants 787
26.13 Design for Minimum Wastewater Treatment Flowrate for Single Contaminants 791
26.14 Regeneration of Wastewater 793
26.15 Targeting and Design for Effluent Treatment and Regeneration Based on Optimization of a Superstructure 798
26.16 Data Extraction 799
26.17 Water System Design – Summary?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 801
26.18 Exercises 802
References 805
Chapter 27: Environmental Sustainability in Chemical Production 807
27.1 Life Cycle Assessment 807
27.2 Efficient Use of Raw Materials Within Processes 812
27.3 Efficient Use of Raw Materials Between Processes 818
27.4 Exploitation of Renewable Raw Materials 820
27.5 Efficient Use of Energy 821
27.6 Integration of Waste Treatment and Energy Sytems 831
27.7 Renewable Energy 832
27.8 Efficient Use of Water 833
27.9 Sustainability in Chemical Production – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 833
27.10 Exercises 834
References 835
Chapter 28: Process Safety 837
28.1 Fire 837
28.2 Explosion 838
28.3 Toxic Release 839
28.4 Hazard Identification 839
28.5 The Hierarchy of Safety Management 841
28.6 Inherently Safer Design 841
28.7 Layers of Protection 845
28.8 Hazard and Operability Studies 848
28.9 Layer of Protection Analysis 849
28.10 Process Safety – Summary???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 849
28.11 Exercises 850
References 851
Appendix A: Physical Properties in Process Design 853
A.1 Equations of State 853
A.2 Phase Equilibrium for Single Components 857
A.3 Fugacity and Phase Equilibrium 857
A.4 Vapor–Liquid Equilibrium 857
A.5 Vapor–Liquid Equilibrium Based on Activity Coefficient Models 859
A.6 Group Contribution Methods for Vapor–Liquid Equilibrium 861
A.7 Vapor–Liquid Equilibrium Based on Equations of State 863
A.8 Calculation of Vapor–Liquid Equilibrium 864
A.9 Liquid–Liquid Equilibrium 867
A.10 Liquid–Liquid Equilibrium Activity Coefficient Models 868
A.11 Calculation of Liquid–Liquid Equilibrium 868
A.12 Choice of Method for Equilibrium Calculations 870
A.13 Calculation of Enthalpy 872
A.14 Calculation of Entropy 873
A.15 Other Physical Properties 874
A.16 Physical Properties in Process Design – Summary 876
A.17 Exercises 877
References 878
Appendix B: Materials of Construction 581
B.1 Mechanical Properties 879
B.2 Corrosion 880
B.3 Corrosion Allowance 881
B.4 Commonly used Materials of Construction 881
B.5 Criteria for Selection 885
B.6 Materials of Construction – Summary 886
References 886
Appendix C: Annualization of Capital Cost 887
Reference 887
Appendix D: The Maximum Thermal Effectiveness for 1–2 Shell-and-Tube Heat Exchangers 27
References 889
Appendix E: Expression for the Minimum Number of 1–2 Shell-and-Tube Heat Exchangers for a Given Unit 891
References 892
Appendix F: Heat Transfer Coefficient and Pressure Drop in Shell-and-Tube Heat Exchangers 893
F.1 Heat Transfer and Pressure Drop Correlations for the Tube Side 893
F.2 Heat Transfer and Pressure Drop Correlations for the Shell Side 895
References 899
Appendix G: Gas Compression Theory 837
G.1 Modeling Reciprocating Compressors 901
G.2 Modeling Dynamic Compressors 903
G.3 Staged Compression 903
References 905
Appendix H: Algorithm for the Heat Exchanger Network Area Target 907
Index 211
EULA 923
| Erscheint lt. Verlag | 2.8.2016 |
|---|---|
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Chemie ► Technische Chemie |
| Technik ► Umwelttechnik / Biotechnologie | |
| Schlagworte | chemical engineering • Chemie • Chemische Verfahrenstechnik • Chemistry • conceptual process design • energy efficiency • Environmental sustainability • Heat integration • Industrial Chemistry • Nachhaltige u. Grüne Chemie • Nachhaltige u. Grüne Chemie • Pinch Analysis • Process design • Process Integration • Process Safety • Raw Materials Efficiency • Sustainable Chemistry & Green Chemistry • Technische Chemie • Technische u. Industrielle Chemie • Verfahrenstechnik • Water Minimisation |
| ISBN-10 | 1-118-69909-2 / 1118699092 |
| ISBN-13 | 978-1-118-69909-6 / 9781118699096 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich