Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Atmospheric Chemistry and Physics (eBook)

From Air Pollution to Climate Change
eBook Download: PDF
2016 | 3. Auflage
John Wiley & Sons (Verlag)
978-1-119-22116-6 (ISBN)

Lese- und Medienproben

Atmospheric Chemistry and Physics - John H. Seinfeld, Spyros N. Pandis
Systemvoraussetzungen
136,99 inkl. MwSt
(CHF 133,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Expanded and updated with new findings and new features

  • New chapter on Global Climate providing a self-contained treatment of climate forcing, feedbacks, and climate sensitivity
  • New chapter on Atmospheric Organic Aerosols and new treatment of the statistical method of Positive Matrix Factorization
  • Updated treatments of physical meteorology, atmospheric nucleation, aerosol-cloud relationships, chemistry of biogenic hydrocarbons
  • Each topic developed from the fundamental science to the point of application to real-world problems
  • New problems at an introductory level to aid in classroom teaching


John H. Seinfeld is Louis E. Nohl Professor at the California Institute of Technology.  He is a member of the U.S. National Academy of Engineering, the U.S. National Academy of Sciences, and a Fellow of the American Academy of Arts and Sciences. He is the recipient of numerous honors and awards, including the American Chemical Society Award for Creative Advances in Environmental Science and Technology, the NASA Public Service Award, the Nevada Medal, the Fuchs Award, and the 2012 Tyler Prize.

Spyros N. Pandis is Professor of Chemical Engineering at the University of Patras, Greece, and Research Professor of Chemical Engineering and Engineering and Public Policy at Carnegie Mellon University.  He is the recipient of the Whitby Award by the American Association for Aerosol Research and the European Research Council Advanced Investigator IDEAS award. He is a Fellow of the American Association for Aerosol Research.


Expanded and updated with new findings and new features New chapter on Global Climate providing a self-contained treatment of climate forcing, feedbacks, and climate sensitivity New chapter on Atmospheric Organic Aerosols and new treatment of the statistical method of Positive Matrix Factorization Updated treatments of physical meteorology, atmospheric nucleation, aerosol-cloud relationships, chemistry of biogenic hydrocarbons Each topic developed from the fundamental science to the point of application to real-world problems New problems at an introductory level to aid in classroom teaching

John H. Seinfeld is Louis E. Nohl Professor at the California Institute of Technology. He is a member of the U.S. National Academy of Engineering, the U.S. National Academy of Sciences, and a Fellow of the American Academy of Arts and Sciences. He is the recipient of numerous honors and awards, including the American Chemical Society Award for Creative Advances in Environmental Science and Technology, the NASA Public Service Award, the Nevada Medal, the Fuchs Award, and the 2012 Tyler Prize. Spyros N. Pandis is Professor of Chemical Engineering at the University of Patras, Greece, and Research Professor of Chemical Engineering and Engineering and Public Policy at Carnegie Mellon University. He is the recipient of the Whitby Award by the American Association for Aerosol Research and the European Research Council Advanced Investigator IDEAS award. He is a Fellow of the American Association for Aerosol Research.

Cover 1
Title Page 5
Copyright 6
Dedication 7
Content 9
Preface to the First Edition 25
Preface to the Third Edition 27
Part I: The Atmosphere and Its Constituents 29
Chapter 1: The Atmosphere 31
1.1 History and Evolution of Earth's Atmosphere 31
1.2 Climate 33
1.3 Layers of the Atmosphere 33
1.4 Pressure in the Atmosphere 35
1.4.1 Units of Pressure 35
1.4.2 Variation of Pressure with Height in the Atmosphere 35
1.5 Temperature in the Atmosphere 38
1.6 Expressing the Amount of a Substance in the Atmosphere 38
1.7 Airborne Particles 42
1.8 Spatial and Temporal Scales of Atmospheric Processes 42
Problems 44
References 45
Chapter 2: Atmospheric Trace Constituents 46
2.1 Atmospheric Lifetime 47
2.2 Sulfur-Containing Compounds 51
2.2.1 Dimethyl Sulfide (CH3SCH3) 54
2.2.2 Carbonyl Sulfide (OCS) 54
2.2.3 Sulfur Dioxide (SO2) 55
2.3 Nitrogen-Containing Compounds 55
2.3.1 Nitrous Oxide (N2O) 56
2.3.2 Nitrogen Oxides (NOx = NO + NO2) 57
2.3.3 Reactive Odd Nitrogen (NOy) 58
2.3.4 Ammonia (NH3) 59
2.3.5 Amines 60
2.4 Carbon-Containing Compounds 60
2.4.1 Classification of Hydrocarbons 60
2.4.2 Methane 62
2.4.3 Volatile Organic Compounds 64
2.4.4 Biogenic Hydrocarbons 64
2.4.5 Carbon Monoxide 67
2.4.6 Carbon Dioxide 68
2.5 Halogen-Containing Compounds 68
2.5.1 Methyl Chloride (CH3Cl) 70
2.5.2 Methyl Bromide (CH3Br) 70
2.6 Atmospheric Ozone 72
2.7 Particulate Matter (Aerosols) 75
2.7.1 Stratospheric Aerosol 76
2.7.2 Chemical Components of Tropospheric Aerosol 76
2.7.3 Cloud Condensation Nuclei (CCN) 77
2.7.4 Sizes of Atmospheric Particles 77
2.7.5 Carbonaceous Particles 79
2.7.6 Mineral Dust 81
2.7.7 Biomass Burning 81
2.7.8 Summary of Atmospheric Particulate Matter 82
2.8 Mercury 83
2.9 Emission Inventories 83
Appendix 2.1 Us Air Pollution Legislation 84
Appendix 2.2 Hazardous Air Pollutants (Air Toxics) 85
Problems 87
References 89
Part II: Atmospheric Chemistry 95
Chapter 3: Chemical Kinetics 97
3.1 Order of Reaction 97
3.2 Theories of Chemical Kinetics 99
3.2.1 Collision Theory 99
3.2.2 Transition State Theory 102
3.2.3 Potential Energy Surface for a Bimolecular Reaction 103
3.3 The Pseudo-Steady-State Approximation 104
3.4 Reactions of Excited Species 105
3.5 Termolecular Reactions 106
3.6 Chemical Families 109
3.7 Gas-Surface Reactions 111
Problems 112
References 115
Chapter 4: Atmospheric Radiation and Photochemistry 116
4.1 Radiation 116
4.2 Radiative Flux in the Atmosphere 119
4.3 Beer-Lambert Law and Optical Depth 121
4.4 Actinic Flux 123
4.5 Atmospheric Photochemistry 125
4.6 Absorption of Radiation By Atmospheric Gases 128
4.7 Absorption By O2 and O3 133
4.8 Photolysis Rate As a Function of Altitude 137
4.9 Photodissociation of O3 to Produce O and O(D) 140
4.10 Photodissociation of No2 142
Problems 145
References 145
Chapter 5: Chemistry of the Stratosphere 147
5.1 Chapman Mechanism 150
5.2 Nitrogen Oxide Cycles 157
5.2.1 Stratospheric Source of NOx from N2O 157
5.2.2 NOx Cycles 159
5.3 Hox Cycles 162
5.4 Halogen Cycles 167
5.4.1 Chlorine Cycles 168
5.4.2 Bromine Cycles 171
5.5 Reservoir Species and Coupling of the Cycles 172
5.6 Ozone Hole 174
5.6.1 Polar Stratospheric Clouds (PSCs) 177
5.6.2 PSCs and the Ozone Hole 178
5.6.3 Arctic Ozone Hole 181
5.7 Heterogeneous (Nonpolar) Stratospheric Chemistry 183
5.7.1 The Stratospheric Aerosol Layer 183
5.7.2 Heterogeneous Hydrolysis of N2O5 183
5.7.3 Effect of Volcanoes on Stratospheric Ozone 188
5.8 Summary of Stratospheric Ozone Depletion 190
5.9 Transport and Mixing in the Stratosphere 193
5.10 Ozone Depletion Potential 195
Problems 196
References 201
Chapter 6: Chemistry of the Troposphere 203
6.1 Production of Hydroxyl Radicals in the Troposphere 204
6.2 Basic Photochemical Cycle of No2, No, and O3 207
6.3 Atmospheric Chemistry of Carbon Monoxide 209
6.3.1 Low-NOx Limit 211
6.3.2 High-NOx Limit 212
6.3.3 Ozone Production Efficiency 212
6.3.4 Theoretical Maximum Yield of Ozone from CO Oxidation 216
6.4 Atmospheric Chemistry of Methane 216
6.5 The Nox and Noy Families 220
6.5.1 Daytime Behavior 220
6.5.2 Nighttime Behavior 221
6.6 Ozone Budget of the Troposphere and Role of Nox 223
6.6.1 Ozone Budget of the Troposphere 223
6.6.2 Role of NOx 223
6.6.3 Global Hydroxyl Radical Budget 225
6.7 Tropospheric Reservoir Molecules 231
6.7.1 H2O2, CH3OOH, and Hydroperoxides 231
6.7.2 Nitrous Acid (HONO) 232
6.7.3 Peroxyacyl Nitrates (PANs) 232
6.8 Relative Roles of Voc and Nox in Ozone Formation 236
6.8.1 Importance of the VOC/NOx Ratio 236
6.8.2 Ozone Isopleth Plot 237
6.8.3 Weekend Ozone Effect 239
6.9 Simplified Organic/Nox Chemistry 240
6.10 Chemistry of Nonmethane Organic Compounds in the Troposphere 242
6.10.1 Alkanes 243
6.10.2 Alkenes 250
6.10.2.1 OH Reaction 251
6.10.2.2 NO3 Reaction 253
6.10.2.3 Ozone Reaction 255
6.10.3 Aromatics 256
6.10.4 Aldehydes 258
6.10.5 Ketones 258
6.10.6 Ethers 259
6.10.7 Alcohols 259
6.10.8 Tropospheric Lifetimes of Organic Compounds 260
6.11 Atmospheric Chemistry of Biogenic Hydrocarbons 261
6.11.1 Atmospheric Chemistry of Isoprene 261
6.11.1.1 Isoprene + OH 262
6.11.1.2 Isoprene + O3 266
6.11.1.3 Isoprene + NO3 266
6.11.1.4 Chemistry of Isoprene Oxidation Products: Methacrolein and Methyl Vinyl Ketone 267
6.11.2 Monoterpenes (?-Pinene) 269
6.11.2.1 ?-Pinene + O3 270
6.11.2.2 ?-Pinene + OH 270
6.12 Atmospheric Chemistry of Reduced Nitrogen Compounds 272
6.12.1 Amines 273
6.12.2 Nitriles 274
6.12.3 Nitrites 274
6.13 Atmospheric Chemistry (Gas Phase) of Sulfur Compounds 274
6.13.1 Sulfur Oxides 274
6.13.2 Reduced Sulfur Compounds (Dimethyl Sulfide) 275
6.14 Tropospheric Chemistry of Halogen Compounds 277
6.14.1 Chemical Cycles of Halogen Species 277
6.14.2 Tropospheric Chemistry of CFC Replacements: Hydrofluorocarbons (HFCs) and Hydrochlorofluorocarbons (HCFCs) 279
6.15 Atmospheric Chemistry of Mercury 281
Appendix 6 Organic Functional Groups 282
Problems 284
References 287
Chapter 7: Chemistry of the Atmospheric Aqueous Phase 293
7.1 Liquid Water in the Atmosphere 293
7.2 Absorption Equilibria and Henry's Law 296
7.3 Aqueous-Phase Chemical Equilibria 299
7.3.1 Water 299
7.3.2 Carbon Dioxide-Water Equilibrium 300
7.3.3 Sulfur Dioxide-Water Equilibrium 302
7.3.4 Ammonia-Water Equilibrium 306
7.3.5 Nitric Acid-Water Equilibrium 308
7.3.6 Equilibria of Other Important Atmospheric Gases 309
7.3.6.1 Hydrogen Peroxide 309
7.3.6.2 Ozone 310
7.3.6.3 Oxides of Nitrogen 310
7.3.6.4 Formaldehyde 310
7.3.6.5 Formic and Other Atmospheric Acids 311
7.3.6.6 OH and HO2 Radicals 312
7.4 Aqueous-Phase Reaction Rates 312
7.5 S(IV)-S(VI) Transformation and Sulfur Chemistry 314
7.5.1 Oxidation of S(IV) by Dissolved O3 314
7.5.2 Oxidation of S(IV) by Hydrogen Peroxide 317
7.5.3 Oxidation of S(IV) by Organic Peroxides 318
7.5.4 Uncatalyzed Oxidation of S(IV) by O2 319
7.5.5 Oxidation of S(IV) by O2 Catalyzed by Iron and Manganese 319
7.5.5.1 Iron Catalysis 319
7.5.5.2 Manganese Catalysis 321
7.5.5.3 Iron/Manganese Synergism 321
7.5.6 Comparison of Aqueous-Phase S(IV) Oxidation Paths 321
7.6 Dynamic Behavior of Solutions With Aqueous-Phase Chemical Reactions 323
7.6.1 Closed System 324
7.6.2 Calculation of Concentration Changes in a Droplet with Aqueous-Phase Reactions 326
Appendix 7.1 Thermodynamic and Kinetic Data 329
Appendix 7.2 Additional Aqueous-Phase Sulfur Chemistry 333
7A.1 S(IV) Oxidation by the OH Radical 333
7A.2 Oxidation of S(IV) by Oxides of Nitrogen 336
7A.3 Reaction of Dissolved SO2 with HCHO 337
Appendix 7.3 Aqueous-Phase Nitrite and Nitrate Chemistry 339
7A.4 NOx Oxidation 339
7A.5 Nitrogen Radicals 339
Appendix 7.4 Aqueous-Phase Organic Chemistry 340
Appendix 7.5 Oxygen and Hydrogen Chemistry 341
Problems 342
References 345
Part III: Aerosols 351
Chapter 8: Properties of the Atmospheric Aerosol 353
8.1 The Size Distribution Function 353
8.1.1 The Number Distribution nN(Dp) 356
8.1.2 The Surface Area, Volume, and Mass Distributions 358
8.1.3 Distributions Based on ln Dp and log Dp 359
8.1.4 Relating Size Distributions Based on Different Independent Variables 361
8.1.5 Properties of Size Distributions 362
8.1.6 Definition of the Lognormal Distribution 363
8.1.7 Plotting the Lognormal Distribution 366
8.1.8 Properties of the Lognormal Distribution 367
8.2 Ambient Aerosol Size Distributions 370
8.2.1 Urban Aerosols 371
8.2.2 Marine Aerosols 372
8.2.3 Rural Continental Aerosols 375
8.2.4 Remote Continental Aerosols 376
8.2.5 Free Tropospheric Aerosols 376
8.2.6 Polar Aerosols 377
8.2.7 Desert Aerosols 377
8.3 Aerosol Chemical Composition 380
8.4 Spatiotemporal Variation 382
Problems 385
References 387
Chapter 9: Dynamics of Single Aerosol Particles 390
9.1 Continuum and Noncontinuum Dynamics: the Mean Free Path 390
9.1.1 Mean Free Path of a Pure Gas 391
9.1.2 Mean Free Path of a Gas in a Binary Mixture 393
9.2 The Drag on a Single Particle: Stokes' Law 396
9.2.1 Corrections to Stokes' Law: The Drag Coefficient 399
9.2.2 Stokes' Law and Noncontinuum Effects: Slip Correction Factor 399
9.3 Gravitational Settling of an Aerosol Particle 400
9.4 Motion of an Aerosol Particle in an External Force Field 404
9.5 Brownian Motion of Aerosol Particles 404
9.5.1 Particle Diffusion 407
9.5.2 Aerosol Mobility and Drift Velocity 409
9.5.3 Mean Free Path of an Aerosol Particle 412
9.6 Aerosol and Fluid Motion 413
9.6.1 Motion of a Particle in an Idealized Flow (90° Corner) 414
9.6.2 Stop Distance and Stokes Number 415
9.7 Equivalent Particle Diameters 416
9.7.1 Volume Equivalent Diameter 416
9.7.2 Stokes Diameter 418
9.7.3 Classical Aerodynamic Diameter 419
9.7.4 Electrical Mobility Equivalent Diameter 421
Problems 421
References 422
Chapter 10: Thermodynamics of Aerosols 424
10.1 Thermodynamic Principles 424
10.1.1 Internal Energy and Chemical Potential 424
10.1.2 The Gibbs Free Energy G 426
10.1.3 Conditions for Chemical Equilibrium 428
10.1.4 Chemical Potentials of Ideal Gases and Ideal-Gas Mixtures 430
10.1.4.1 The Single Ideal Gas 431
10.1.4.2 The Ideal-Gas Mixture 431
10.1.5 Chemical Potential of Solutions 432
10.1.5.1 Ideal Solutions 432
10.1.5.2 Nonideal Solutions 435
10.1.5.3 Pure Solid Compounds 435
10.1.5.4 Solutions of Electrolytes 436
10.1.6 The Equilibrium Constant 436
10.2 Aerosol Liquid Water Content 437
10.2.1 Chemical Potential of Water in Atmospheric Particles 439
10.2.2 Temperature Dependence of the DRH 440
10.2.3 Deliquescence of Multicomponent Aerosols 443
10.2.4 Crystallization of Single- and Multicomponent Salts 447
10.3 Equilibrium Vapor Pressure Over a Curved Surface: the Kelvin Effect 447
10.4 Thermodynamics of Atmospheric Aerosol Systems 451
10.4.1 The H2SO4-H2O System 451
10.4.2 The Sulfuric Acid-Ammonia-Water System 455
10.4.3 The Ammonia-Nitric Acid-Water System 458
10.4.3.1 Ammonium Nitrate Solutions 460
10.4.4 The Ammonia-Nitric Acid-Sulfuric Acid-Water System 462
10.4.5 Other Inorganic Aerosol Species 467
10.4.6 Organic Aerosol 468
10.5 Aerosol Thermodynamic Models 468
Problems 470
References 471
Chapter 11: Nucleation 476
11.1 Classical Theory of Homogeneous Nucleation: Kinetic Approach 477
11.1.1 The Forward Rate Constant ?i 480
11.1.2 The Reverse Rate Constant ?i 481
11.1.3 Derivation of the Nucleation Rate 481
11.2 Classical Homogeneous Nucleation Theory: Constrained Equilibrium Approach 485
11.2.1 Free Energy of i-mer Formation 485
11.2.2 Constrained Equilibrium Cluster Distribution 487
11.2.3 The Evaporation Coefficient ?i 489
11.2.4 Nucleation Rate 489
11.3 Recapitulation of Classical Theory 492
11.4 Experimental Measurement of Nucleation Rates 493
11.4.1 Upward Thermal Diffusion Cloud Chamber 494
11.4.2 Fast Expansion Chamber 494
11.4.3 Turbulent Mixing Chambers 495
11.5 Modifications of the Classical Theory and More Rigorous Approaches 495
11.6 Binary Homogeneous Nucleation 496
11.7 Binary Nucleation in the H2so4-H2o System 501
11.8 Nucleation on an Insoluble Foreign Surface 503
11.9 Ion-Induced Nucleation 506
11.10 Atmospheric New-Particle Formation 508
11.10.1 Molecular Constituency of New Particles 509
11.10.2 New-Particle Growth Rates 510
11.10.3 CLOUD Studies of Atmospheric Nucleation 510
11.10.4 Atmospheric Nucleation by Organic Species 515
Appendix 11 the Law of Mass Action 515
Problems 517
References 518
Chapter 12: Mass Transfer Aspects of Atmospheric Chemistry 521
12.1 Mass and Heat Transfer to Atmospheric Particles 521
12.1.1 The Continuum Regime 521
12.1.2 The Kinetic Regime 525
12.1.3 The Transition Regime 525
12.1.3.1 Fuchs Theory 525
12.1.3.2 Fuchs-Sutugin Approach 526
12.1.3.3 Dahneke Approach 527
12.1.3.4 Loyalka Approach 527
12.1.3.5 Sitarski-Nowakowski Approach 527
12.1.4 The Accommodation Coefficient 528
12.2 Mass Transport Limitations in Aqueous-Phase Chemistry 531
12.2.1 Characteristic Time for Gas-Phase Diffusion to a Particle 533
12.2.2 Characteristic Time to Achieve Equilibrium at the Gas-Liquid Interface 534
12.2.3 Characteristic Time of Aqueous Dissociation Reactions 536
12.2.4 Characteristic Time of Aqueous-Phase Diffusion in a Droplet 538
12.2.5 Characteristic Time for Aqueous-Phase Chemical Reactions 539
12.3 Mass Transport and Aqueous-Phase Chemistry 539
12.3.1 Gas-Phase Diffusion and Aqueous-Phase Reactions 540
12.3.2 Aqueous-Phase Diffusion and Reaction 542
12.3.3 Interfacial Mass Transport and Aqueous-Phase Reactions 543
12.3.4 Application to the S(IV)-Ozone Reaction 545
12.3.5 Application to the S(IV)-Hydrogen Peroxide Reaction 547
12.3.6 Calculation of Aqueous-Phase Reaction Rates 548
12.3.6.1 No Mass Transport Limitations 548
12.3.6.2 Aqueous-Phase Mass Transport Limitation 548
12.3.6.3 Gas-Phase Limitation 551
12.3.6.4 Interfacial Limitation 551
12.3.6.5 Gas-Phase Plus Interfacial Limitation 551
12.3.7 An Aqueous-Phase Chemistry/Mass Transport Model 553
12.4 Mass Transfer to Falling Drops 554
12.5 Characteristic Time for Atmospheric Aerosol Equilibrium 555
12.5.1 Solid Aerosol Particles 556
12.5.2 Aqueous Aerosol Particles 557
12. Appendix 12 Solution of the Transient Gas-Phase Diffusion 560
Problems 561
References 563
Chapter 13: Dynamics of Aerosol Populations 565
13.1 Mathematical Representations of Aerosol Size Distributions 565
13.1.1 Discrete Distribution 565
13.1.2 Continuous Distribution 566
13.2 Condensation 566
13.2.1 The Condensation Equation 566
13.2.2 Solution of the Condensation Equation 568
13.3 Coagulation 572
13.3.1 Brownian Coagulation 572
13.3.1.1 Continuum Regime 572
13.3.1.2 Transition and Free Molecular Regime 575
13.3.1.3 Coagulation Rates 576
13.3.1.4 Collision Efficiency 578
13.3.2 The Coagulation Equation 579
13.3.2.1 The Discrete Coagulation Equation 579
13.3.2.2 The Continuous Coagulation Equation 581
13.3.3 Solution of the Coagulation Equation 581
13.3.3.1 Discrete Coagulation Equation 581
13.3.3.2 Continuous Coagulation Equation 583
13.4 The Discrete General Dynamic Equation 585
13.5 The Continuous General Dynamic Equation 586
Appendix 13.1 Additional Mechanisms of Coagulation 588
13.A.1 Coagulation in Laminar Shear Flow 588
13.A.2 Coagulation in Turbulent Flow 588
13.A.3 Coagulation from Gravitational Settling 589
13.A.4 Brownian Coagulation and External Force Fields 590
13.A.4.1 Van der Waals Forces 590
13.A.4.2 Coulomb Forces 592
13.A.4.3 Hydrodynamic Forces 593
Appendix 13.2 Solution of (13.73) 595
Problems 596
References 599
Chapter 14: Atmospheric Organic Aerosols 601
14.1 Chemistry of Secondary Organic Aerosol Formation 602
14.1.1 Oxidation State of Organic Compounds 604
14.1.2 Generation of Highly Oxygenated Species by Autoxidation 607
14.2 Volatility of Organic Compounds 610
14.3 Idealized Description of Secondary Organic Aerosol Formation 611
14.3.1 Noninteracting Secondary Organic Aerosol Compounds 611
14.3.2 Formation of Binary Ideal Solution with Preexisting Aerosol 614
14.3.3 Formation of Binary Ideal Solution with Other Organic Vapor 616
14.4 Gas-Particle Partitioning 618
14.4.1 Gas-Particle Equilibrium 618
14.4.2 Effect of Aerosol Water on Gas-Particle Partitioning 622
14.5 Models of Soa Formation and Evolution 624
14.5.1 The Volatility Basis Set 625
14.5.2 Two-Dimensional SOA Models 631
14.5.2.1 Two-Dimensional VBS 631
14.5.2.2 Statistical Oxidation Model (SOM) 632
14.5.2.3 Carbon Number-Polarity Grid (CNPG) 633
14.5.2.4 Functional Group Oxidation Model (FGOM) 633
14.5.2.5 Conclusion 633
14.6 Primary Organic Aerosol 633
14.7 The Physical State of Organic Aerosols 636
14.8 Soa Particle-Phase Chemistry 638
14.8.1 Particle-Phase Accretion Reactions 640
14.8.2 Heterogeneous Gas-Aerosol Reactions 640
14.9 Aqueous-Phase Secondary Organic Aerosol Formation 643
14.9.1 Gas- versus Aqueous-Phase Routes to SOA 644
14.9.2 Sources of OH Radicals in the Aqueous Phase 646
14.9.3 Glyoxal as a Source of aqSOA 647
14.10 Estimates of the Global Budget of Atmospheric Organic Aerosol 650
14.10.1 Estimate Based on Total VOC Emissions 650
14.10.2 Sulfate Lifetime and Ratio of Organic to Sulfate 650
14.10.3 Atmospheric Burden and Lifetime of SOA 651
14.10.4 Satellite Measurements 651
Problems 651
References 654
Chapter 15: Interaction of Aerosols with Radiation 661
15.1 Scattering and Absorption of Light By Small Particles 661
15.1.1 Rayleigh Scattering Regime 666
15.1.2 Geometric Scattering Regime 668
15.1.3 Scattering Phase Function 668
15.1.4 Extinction by an Ensemble of Particles 668
15.2 Visibility 672
15.3 Scattering, Absorption, and Extinction Coefficients From Mie Theory 675
15.4 Calculated Visibility Reduction Based on Atmospheric Data 679
Appendix 15 Calculation of Scattering and Extinction Coefficients By Mie Theory 682
Problems 682
References 684
Part IV: Physical and Dynamic Meteorology, Cloud Physics, and Atmospheric Diffusion 687
Chapter 16: Physical and Dynamic Meteorology 689
16.1 Temperature in the Lower Atmosphere 689
16.2 Atmospheric Stability 693
16.3 The Moist Atmosphere 698
16.3.1 The Gas Constant for Moist Air 699
16.3.2 Level of Cloud Formation: The Lifting Condensation Level 699
16.3.3 Dew-point and Wet-Bulb Temperatures 701
16.3.4 The Moist Adiabatic Lapse Rate 703
16.3.5 Stability of Moist Air 707
16.3.6 Convective Available Potential Energy (CAPE) 708
16.3.7 Thermodynamic Diagrams 709
16.4 Basic Conservation Equations for the Atmospheric Surface Layer 711
16.4.1 Turbulence 715
16.4.2 Equations for the Mean Quantities 716
16.4.3 Mixing-Length Models for Turbulent Transport 718
16.5 Variation of Wind With Height in the Atmosphere 720
16.5.1 Mean Velocity in the Adiabatic Surface Layer over a Smooth Surface 721
16.5.2 Mean Velocity in the Adiabatic Surface Layer over a Rough Surface 722
16.5.3 Mean Velocity Profiles in the Nonadiabatic Surface Layer 723
16.5.4 The Pasquill Stability Classes-Estimation of L 726
16.5.5 Empirical Equation for the Mean Windspeed 728
Appendix 16.1 Properties of Water and Water Solutions 729
16.A.1 Specific Heat of Water and Ice 729
16.A.2 Latent Heats of Vaporization and Melting for Water 729
16.A.3 Water Surface Tension 729
Appendix 16.2 Derivation of the Basic Equations of Surface-Layer Atmospheric Fluid Mechanics 730
Problems 733
References 734
Chapter 17: Cloud Physics 736
17.1 Equilibrium of Water Droplets in the Atmosphere 736
17.1.1 Equilibrium of a Pure Water Droplet 736
17.1.2 Equilibrium of a Flat Water Solution 738
17.1.3 Atmospheric Equilibrium of an Aqueous Solution Drop 740
17.1.3.1 Stability of Atmospheric Droplets 743
17.1.4 Atmospheric Equilibrium of an Aqueous Solution Drop Containing an Insoluble Substance 745
17.2 Cloud and Fog Formation 747
17.2.1 Isobaric Cooling 748
17.2.2 Adiabatic Cooling 748
17.2.3 A Simplified Mathematical Description of Cloud Formation 749
17.3 Growth Rate of Individual Cloud Droplets 751
17.4 Growth of a Droplet Population 754
17.5 Cloud Condensation Nuclei 758
17.5.1 Ambient CCN 761
17.5.2 The Hygroscopic Parameter Kappa 761
17.6 Cloud Processing of Aerosols 764
17.6.1 Nucleation Scavenging of Aerosols by Clouds 764
17.6.2 Chemical Composition of Cloud Droplets 765
17.6.3 Nonraining Cloud Effects on Aerosol Concentrations 767
17.6.4 Interstitial Aerosol Scavenging by Cloud Droplets 770
17.7 Other Forms of Water in the Atmosphere 771
17.7.1 Ice Clouds 771
17.7.1.1 Freezing-Point Depression 772
17.7.1.2 Curvature Effects 774
17.7.1.3 Ice Nucleating Particles (INP) 774
17.7.2 Rain 775
17.7.2.1 Raindrop Distributions 778
Appendix 17 Extended Köhler Theory 779
17.1 Modified Form of Köhler Theory for a Soluble Trace Gas 779
17.2 Modified Form of Köhler Theory for a Slightly Soluble Substance 782
17.3 Modified Form of Köhler Theory for a Surface-Active Solute 783
17.4 Examples 784
Problems 787
References 788
Chapter 18: Atmospheric Diffusion 791
18.1 Eulerian Approach 791
18.2 Lagrangian Approach 794
18.3 Comparison of Eulerian and Lagrangian Approaches 795
18.4 Equations Governing the Mean Concentration of Species in Turbulence 795
18.4.1 Eulerian Approaches 795
18.4.2 Lagrangian Approaches 797
18.5 Solution of the Atmospheric Diffusion Equation For an Instantaneous Source 799
18.6 Mean Concentration from Continuous Sources 800
18.6.1 Lagrangian Approach 800
18.6.1.1 An Alternate Derivation of (18.42) 802
18.6.1.2 Still Another Derivation of (18.42) 804
18.6.2 Eulerian Approach 804
18.6.2.1 An Alternate Derivation of (18.55) 805
18.6.3 Summary of Continuous Point Source Solutions 805
18.7 Statistical Theory of Turbulent Diffusion 806
18.7.1 Qualitative Features of Atmospheric Diffusion 806
18.7.2 Motion of a Single Particle Relative to a Fixed Axis 808
18.8 Summary of Atmospheric Diffusion Theories 811
18.9 Analytical Solutions for Atmospheric Diffusion: the Gaussian Plume Equation and Others 812
18.9.1 Gaussian Concentration Distributions 812
18.9.1.1 Total Reflection at z = 0 813
18.9.1.2 Total Absorption at z = 0 813
18.9.2 Derivation of the Gaussian Plume Equation as a Solution of the Atmospheric Diffusion Equation 814
18.9.2.1 Solution of (18.90) to (18.92) 815
18.9.3 Summary of Gaussian Point Source Diffusion Formulas 819
18.10 Dispersion Parameters in Gaussian Models 819
18.10.1 Correlations for ?y and ?z Based on Similarity Theory 819
18.10.2 Correlations for ?y and ?z Based on Pasquill Stability Classes 823
18.11 Plume Rise 824
18.12 Functional Forms of Mean Windspeed and Eddy Diffusivities 826
18.12.1 Mean Windspeed 828
18.12.2 Vertical Eddy Diffusion Coefficient Kzz 828
18.12.2.1 Unstable Conditions 828
18.12.2.2 Neutral Conditions 829
18.12.2.3 Stable Conditions 831
18.12.3 Horizontal Eddy Diffusion Coefficients Kxx and Kyy 831
18.13 Solutions of The Steady-State Atmospheric Diffusion Equation 831
18.13.1 Diffusion from a Point Source 832
18.13.2 Diffusion from a Line Source 833
APPENDIX 18.1 Further Solutions of Atmospheric Diffusion Problems 835
18A.1 Solution of (18.29)–(18.31) 835
18A.2 Solution of (18.50) and (18.51) 837
18A.3 Solution of (18.59)–(18.61) 838
APPENDIX 18.2 Analytical Properties of the Gaussian Plume Equation 839
Problems 843
REFERENCES 851
Part V: Dry and Wet Deposition 855
Chapter 19: Dry Deposition 857
19.1 Deposition Velocity 857
19.2 Resistance Model for Dry Deposition 858
19.3 Aerodynamic Resistance 862
19.4 Quasilaminar Resistance 863
19.4.1 Gases 864
19.4.2 Particles 864
19.5 Surface Resistance 867
19.5.1 Surface Resistance for Dry Deposition of Gases to Water 869
19.5.2 Surface Resistance for Dry Deposition of Gases to Vegetation 873
19.6 Measurement of Dry Deposition 877
19.6.1 Direct Methods 877
19.6.1.1 Surrogate Surfaces 877
19.6.1.2 Natural Surfaces 877
19.6.1.3 Chamber Method 878
19.6.1.4 Eddy Correlation 878
19.6.1.5 Eddy Accumulation 878
19.6.2 Indirect Methods 878
19.6.2.1 Gradient Method 878
19.6.2.2 Inferential Method 879
19.6.3 Comparison of Methods 879
19.7 Some Comments on Modeling and Measurement of Dry Deposition 879
Problems 880
References 882
Chapter 20: Wet Deposition 884
20.1 General Representation of Atmospheric Wet Removal Processesƒ 884
20.2 Below-Cloud Scavenging of Gases 888
20.2.1 Below-Cloud Scavenging of an Irreversibly Soluble Gas 889
20.2.2 Below-Cloud Scavenging of a Reversibly Soluble Gas 892
20.3 Precipitation Scavenging of Particles 896
20.3.1 Raindrop-Aerosol Collision Efficiency 898
20.3.2 Scavenging Rates 899
20.4 In-Cloud Scavenging 901
20.5 Acid Deposition 902
20.5.1 Acid Rain Overview 902
20.5.1.1 Historical Perspective 902
20.5.1.2 Definition of the Problem 903
20.5.2 Surface Water Acidification 904
20.5.3 Cloudwater Deposition 905
20.5.4 Fogs and Wet Deposition 905
20.6 Acid Deposition Process Synthesis 906
20.6.1 Chemical Species Involved in Acid Deposition 906
20.6.2 Dry versus Wet Deposition 906
20.6.3 Chemical Pathways for Sulfate and Nitrate Production 906
20.6.4 Source-Receptor Relationships 907
20.6.5 Linearity 908
Problems 909
References 914
Part VI: The Global Atmosphere, Biogeochemical Cycles, and Climate 917
Chapter 21: General Circulation of the Atmosphere 919
21.1 Hadley Cell 921
21.2 Ferrell Cell and Polar Cell 921
21.3 Coriolis Force 923
21.4 Geostrophic Windspeed 925
21.4.1 Buys Ballot's Law 927
21.4.2 Ekman Spiral 928
21.5 The Thermal Wind Relation 930
21.6 Stratospheric Dynamics 933
21.7 The Hydrologic Cycle 933
Problems 934
References 935
Chapter 22: Global Cycles: Sulfur and Carbon 936
22.1 The Atmospheric Sulfur Cycle 936
22.2 The Global Carbon Cycle 940
22.2.1 Carbon Dioxide 940
22.2.2 Compartmental Model of the Global Carbon Cycle 942
22.2.3 Atmospheric Lifetime of CO2 949
22.3 Solution for a Steady-State Four-Compartment Model of the Atmosphere 951
Problems 955
References 957
Chapter 23: Global Climate 959
23.1 Earth'S Energy Balance 959
23.2 Radiative Forcing 961
23.2.1 Climate Sensitivity 962
23.2.2 Climate Feedbacks 963
23.2.3 Timescales of Climate Change 963
23.3 The Greenhouse Effect 964
23.4 Climate-Forcing Agents 970
23.4.1 Solar Irradiance 970
23.4.2 Greenhouse Gases 973
23.4.3 Radiative Efficiencies of Greenhouse Gases 974
23.4.4 Aerosols 974
23.4.5 Summary of IPCC (2013) Estimated Forcing 975
23.4.6 The Preindustrial Atmosphere 976
23.5 Cosmic Rays and Climate 977
23.6 Climate Sensitivity 978
23.7 Simplified Dynamic Description of Climate Forcing and Responseƒ 979
23.7.1 Response to a Perturbation of Earth's Radiative Equilibrium 979
23.7.2 Physical Interpretation of Feedback Factors 982
23.8 Climate Feedbacks 983
23.8.1 Water Vapor Feedback 983
23.8.2 Lapse Rate Feedback 984
23.8.3 Cloud Feedback 984
23.8.4 Arctic Sea Ice Feedback 986
23.8.5 Summary of Feedbacks 986
23.9 Relative Radiative Forcing Indices 988
23.10 Atmospheric Chemistry and Climate Change 989
23.10.1 Indirect Chemical Impacts 990
23.10.2 Atmospheric Lifetimes and Adjustment Times 991
23.11 Conclusion 992
Problems 993
References 995
Chapter 24: Aerosols and Climate 998
24.1 Scattering-Absorbing Model of an Aerosol Layer 1000
24.2 Cooling Versus Heating of an Aerosol Layer 1003
24.3 Scattering Model of an Aerosol Layer for a Nonabsorbing Aerosol 1005
24.4 Upscatter Fraction 1007
24.5 Optical Depth and Column Forcing 1009
24.6 Internal and External Mixtures 1013
24.7 Top-Of-The-Atmosphere Versus Surface Forcing 1015
24.8 Indirect Effects of Aerosols on Climate 1018
24.8.1 Stratocumulus Clouds 1019
24.8.2 Simplified Model for Cloud Albedo 1021
24.8.3 Albedo Susceptibility: Simplified Model 1023
24.8.4 Albedo Susceptibility: Additional Considerations 1025
24.8.5 A General Equation for Cloud Albedo Susceptibility 1027
24.8.6 Estimating Indirect Aerosol Forcing on Climate 1031
Problems 1031
References 1032
Part VII: Chemical Transport Models and Statistical Models 1037
Chapter 25: Atmospheric Chemical Transport Models 1039
25.1 Introduction 1039
25.1.1 Model Types 1040
25.1.2 Types of Atmospheric Chemical Transport Models 1041
25.2 Box Models 1042
25.2.1 The Eulerian Box Model 1043
25.2.2 A Lagrangian Box Model 1045
25.3 Three-Dimensional Atmospheric Chemical Transport Models 1048
25.3.1 Coordinate System-Uneven Terrain 1048
25.3.2 Initial Conditions 1050
25.3.3 Boundary Conditions 1051
25.4 One-Dimensional Lagrangian Models 1052
25.5 Other Forms of Chemical Transport Models 1054
25.5.1 Atmospheric Diffusion Equation Expressed in Terms of Mixing Ratio 1054
25.5.2 Pressure-Based Coordinate System 1057
25.5.3 Spherical Coordinates 1059
25.6 Numerical Solution of Chemical Transport Models 1059
25.6.1 Coupling Problem-Operator Splitting 1060
25.6.1.1 Finite Difference Methods 1060
25.6.1.2 Finite Element Methods 1062
25.6.1.3 Operator Splitting 1063
25.6.2 Chemical Kinetics 1065
25.6.2.1 Backward Differentiation Methods 1068
25.6.2.2 Asymptotic Methods 1068
25.6.3 Diffusion 1069
25.6.4 Advection 1070
25.7 Model Evaluation 1074
25.8 Response of Organic and Inorganic Aerosols to Changes in Emission 1075
Problems 1076
References 1078
Chapter 26: Statistical Models 1079
26.1 Receptor Modeling Methods 1079
26.2 Chemical Mass Balance (Cmb) 1082
26.2.1 CMB Evaluation 1086
26.2.2 CMB Resolution 1087
26.2.3 CMB Codes 1087
26.3 Factor Analysis 1087
26.3.1 Principal-Component Analysis (PCA) 1089
26.3.2 Positive Matrix Factorization (PMF) 1092
26.3.2.1 Uncertainties and Missing Values 1092
26.3.2.2 Extreme Values 1093
26.3.2.3 Choice of Number of Factors 1093
26.3.2.4 Rotational Ambiguity 1094
26.3.2.5 The Multilinear Engine (ME) 1095
26.4 Methods Incorporating Wind Information 1095
26.4.1 Potential Source Contribution Function (PSCF) 1096
26.4.2 Empirical Orthogonal Function (EOF) 1098
26.5 Probability Distributions for Air Pollutant Concentrations 1100
26.5.1 The Lognormal Distribution 1101
26.5.2 The Weibull Distribution 1102
26.6 Estimation of Parameters in the Distributions 1102
26.6.1 Method of Quantiles 1103
26.6.2 Method of Moments 1104
26.7 Order Statistics of Air Quality Data 1106
26.7.1 Basic Notions and Terminology of Order Statistics 1106
26.7.2 Extreme Values 1107
26.8 Exceedances of Critical Levels 1108
26.9 Alternative Forms of Air Quality Standards 1108
26.10 Relating Current and Future Air Pollutant Statistical Distributions 1111
Problems 1113
References 1115
Appendix A: Units and Physical Constants 1119
A.1 Si Base Units 1119
A.2 Si Derived Units 1120
A.3 Fundamental Physical Constants 1122
A.4 Properties of the Atmosphere and Water 1122
A.5 Units for Representing Chemical Reactions 1124
A.6 Concentrations in the Aqueous Phase 1124
A.7 Symbols Denoting Concentration 1125
References 1125
Appendix B: Rate Constants of Atmospheric Chemical Reactions 1126
References 1134
Appendix C: Abbreviations 1135
Index 1140
EULA 1149

Erscheint lt. Verlag 29.3.2016
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik
Schlagworte Areas • Atmospheric • Atmospheric Physics & Chemistry • author • Chemie • Chemistry • Classic • climate change • Comprehensive • earth sciences • Edition • Environmental Chemistry • Environmental Science • Environmental Studies • Field • Findings • Geowissenschaften • New • particularly • Physics • Physik u. Chemie der Atmosphäre • Physik u. Chemie der Atmosphäre • Place • previous • Progress • Science • Second • significant • Team • Tropospheric • two editions • Umweltchemie • Umweltforschung • Umweltwissenschaften • Work
ISBN-10 1-119-22116-1 / 1119221161
ISBN-13 978-1-119-22116-6 / 9781119221166
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich