Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Perovskites (eBook)

Structure-Property Relationships
eBook Download: EPUB
2016
John Wiley & Sons (Verlag)
978-1-118-93564-4 (ISBN)

Lese- und Medienproben

Perovskites - Richard J. D. Tilley
Systemvoraussetzungen
136,99 inkl. MwSt
(CHF 133,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Uniquely describes both the crystallography and properties of perovskite related materials.

  • Practical applications in solar cells, microelectronics and telecommunications
  • Interdisciplinary topic drawing on materials science, chemistry, physics, and geology
  • Contains problems and answers to enhance knowledge retention 


Richard J. D. Tilley, D. Sc, Ph. D, is Emeritus Professor in the School of Engineering at the University of Cardiff, Wales, U.K. He has published extensively in the area of solid-state materials science, including four books for Wiley, 180 papers, and 15 fifteen book chapters.
Uniquely describes both the crystallography and properties of perovskite related materials. Practical applications in solar cells, microelectronics and telecommunications Interdisciplinary topic drawing on materials science, chemistry, physics, and geology Contains problems and answers to enhance knowledge retention

Richard J. D. Tilley, D. Sc, Ph. D, is Emeritus Professor in the School of Engineering at the University of Cardiff, Wales, U.K. He has published extensively in the area of solid-state materials science, including four books for Wiley, 180 papers, and 15 fifteen book chapters.

1
The ABX3 Perovskite Structure


1.1 Perovskites


Perovskite is a mineral of formula CaTiO3. It was discovered in 1839 by the Prussian mineralogist Gustav Rose in mineral deposits in the Ural Mountains and named after the Russian mineralogist Count Lev Aleksevich von Petrovski. Natural crystals have a hardness of 5.5–6 and a density of 4000–4300 kg m−3. They are usually dark brown to black, due to impurities, but when pure are clear with a refractive index of approximately 2.38. The crystal structure of this compound, initially thought to be cubic, was later shown to be orthorhombic (Table 1.1).

Table 1.1 Representative ABX3 perovskite phasesa

Phase Space groupb Unit cell
a (nm) b (nm) c (nm)
1, 2
AgMgF3 C, Pm m (221) 0.41162
CsPbI3 C, Pm m (221) 0.62894
KCuF3 T, I4/mcm (140) 0.56086 0.76281
KMgF3 C, Pm m (221) 0.39897
KZnF3 C, Pm m 0.40560
NaMgF3 O, Pbnm (62) 0.48904 0.52022 0.71403
NaFeF3 O, Pnma (62) 0.56612 0.78801 0.54836
NH4ZnF3 C, Pm m (221) 0.41162
1, 5
KTaO3 C, Pm m (221) 0.40316
KNbO3 O, Amm2 (38) 0.3971 0.5697 0.5723
2, 4
SrTiO3 C, Pm m (221) 0.3905
BaTiO3 T, P4mm (99) 0.39906 0.40278
CaTiO3 O, Pbmn (62) 0.54035 0.54878 0.76626
BaSnO3 C, Pm m (221) 0.4117
CdSnO3 O, Pnma (62) 0.52856 0.74501 0.51927
CaIrO3 O, Pbnm (62) 0.52505 0.55929 0.76769
PbTiO3 T, P4mm (99) 0.3902 0.4143
PbZrO3 O, Pbam (55) 0.58822 1.17813 0.82293
SrCoO3 C, Pm m (221) 0.3855
SrMoO3 C, Pm m (221) 0.39761
SrRuO3 O, Pnma (62) 0.55328 0.78471 0.55693
(Fe,Mg)SiO3 O, Pnma (62) 0.5020 0.6900 0.4810
3, 3
BiFeO3 Tr, R3c (161) 0.55798 1.3867
BiInO3 O, Pnma (62) 0.59546 0.83864 0.50619
ErCoO3 O, Pbnm (62) 0.51212 0.54191 0.73519
GdFeO3 O, Pbnm (62) 0.53490 0.56089 0.76687
HoCrO3 O, Pnma (62) 0.5518 0.7539 0.5245
LaAlO3 Tr, R3c (161) 0.53644 1.31195
LaCoO3 Tr, R c (167) 0.54437 1.30957
LaMnO3 O, Pbnm (62) 0.55367 0.57473 0.76929
LaTiO3 O, Pbnm (62) 0.5576 0.5542 0.7587
NdAlO3 Tr, R c (167) 0.53796 1.31386
PrRuO3 O, Pnma (62) 0.58344 0.77477 0.53794
YbMnO3 O, Pbnm (62) 0.52208 0.58033 0.73053
4, 5
ThTaN3 C, Pm m 0.4020

aMany of these phases are polymorphic, and lattice parameters vary with temperature and pressure.

bThe crystal system, here and throughout the other tables in this book, is abbreviated thus: C, cubic; H, hexagonal; M, monoclinic; O, orthorhombic; T, tetragonal; Tr, trigonal (often specified in terms of a hexagonal unit cell); Tri, triclinic.

As with many minerals, Perovskite has given its name to a family of compounds called perovskites, which have a general formula close to or derived from the composition ABX3. At present many hundreds of compounds are known that adopt the perovskite structure. In fact a perovskite structure mineral, Bridgmanite (Fe,Mg)SiO3, is the most abundant solid phase in the Earth’s interior, making up 38% of the total. The phase occurs between depths of approximately 660–2900 km but is only stable at high temperatures and pressures so that it is not found at the surface of the Earth.

To some extent the multiplicity of phases that belong to the perovskite family can be rationalised by assuming that perovskites are simple ionic compounds, where A is usually a large cation, B is usually a medium-sized cation and X is an anion. Naturally the overall ionic structure must be electrically neutral. If the charges on the ions are written as qA, qB and qX, then

Frequently encountered (but not exclusive) combinations are

The importance of perovskites became apparent with the discovery of the valuable dielectric and ferroelectric properties of barium titanate, BaTiO3, in the 1940s. This material was rapidly employed in electronics in the form of capacitors and transducers. In the decades that followed, attempts to improve the material properties of BaTiO3 lead to intensive research on the structure – property relations of a large number of nominally ionic ceramic perovskite-related phases with overall compositions ABO3, with a result that vast numbers of new phases were synthesised.

It was soon realised that, as a group, these materials possessed very useful physical and chemical properties far broader than those shown by BaTiO3, and research widened to include a range of structures and phases that could all be related structurally to the perovskite family, including nominally ionic nitrides and oxynitrides. In addition, a number of materials which are better described as alloys, of formula A3BX, where A and B are metals and X is an anion or semimetal, typically C, N, O and B are known. These are often said to adopt the so-called antiperovskite or inverse perovskite structure, because the metal A atoms occupy the positions corresponding to the anions in the ionic perovskites and the B and X atoms occupy sites corresponding to those occupied by the cations. The flexibility of the perovskite framework also allows it to include cations such as NH4+, which can often be considered to be spherical at normal temperatures. More complex phases, such as the inorganic–organic hybrid compounds (CH3NH3)PbX3, where X is typically Cl, Br, I or a combination of these anions, have also been synthesised.

As well as phases with an ABX3 composition, large numbers of modular structures have been prepared, all of which are built up, at least in part, from fragments, usually slabs, of perovskite-like structure. The formulae of these are not easily reconciled with a composition of ABX3 until the structural building principles have been found and the nature of the interfaces between the various slabs is clarified. For example, Bi2Ca2Sr2Cu3O10+δ, a superconducting oxide, is built from slabs of perovskite type separated by slabs of composition Bi2O2.

As would be expected, there is a close correlation between chemical and physical properties in these complex materials. It is this flexibility that makes the perovskites as a group, important, as the facile replacement of any of the atoms in this range of structures can be used to modify important physical properties in a controlled way. The flexibility comes at a...

Erscheint lt. Verlag 15.3.2016
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Chemie • Chemistry • Cuprate superconductors • Electronic ceramics • Energie • Energy • Ferroelectric • Festkörperchemie • Festkörperchemie • Hexagonal perovskites • Materialeigenschaften • Materials Science • Materialwissenschaften • Multiferroic Materials • Optical amplification and Modulation • Perovskite materials • Perovskite Properties • perovskites • Perovskite solar cells • Perovskite structures • Perowskit • Piezoelectric • properties of materials • Solarenergie • Solarenergie u. Photovoltaik • Solar Energy & Photovoltaics • solid state chemistry
ISBN-10 1-118-93564-0 / 1118935640
ISBN-13 978-1-118-93564-4 / 9781118935644
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Gefüge von Metallen, Keramiken und Verbunden

von Heinrich Oettel; Gaby Ketzer-Raichle

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 95,70