Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Hydrogen Science and Engineering (eBook)

Materials, Processes, Systems, and Technology

Detlef Stolten, Bernd Emonts (Herausgeber)

eBook Download: PDF
2016
Wiley-VCH (Verlag)
978-3-527-67429-9 (ISBN)

Lese- und Medienproben

Hydrogen Science and Engineering -
Systemvoraussetzungen
368,99 inkl. MwSt
(CHF 359,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments.

The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.



Detlef Stolten is the Director of the Institute of Energy Research at the Forschungszentrum Jülich. Prof. Stolten received his doctorate from the University of Technology at Clausthal, Germany. He served many years as a Research Scientist in the laboratories of Robert Bosch and Daimler Benz/Dornier. In 1998 he accepted the position of Director of the Institute of Materials and Process Technology at the Research Center Jülich, Germany. Two years later he became Professor for Fuel Cell Technology at the University of Technology (RWTH) at Aachen. Prof. Stolten's research focuses on fuel cells, implementing results from research in innovative products, procedures and processes in collaboration with industry, contributing towards bridging the gap between science and technology. His research activities are focused on energy process engineering of SOFC and PEFC systems, i.e. electrochemistry, stack tech-nology, process and systems engineering as well as systems analysis. Prof. Stolten represents Germany in the Executive Committee of the IEA Annex Advanced Fuel Cells and is on the advisory board of the journal Fuel Cells.

Dr. Bernd Emonts is the Deputy Director of the Institute of Energy Research at the Jülich Research Center, Germany. He received his diploma in structural engineering from the Aachen University of Applied Sciences, Germany, in 1981. He went on to specialize in the fundamentals of mechanical engineering at RWTH Aachen University, Germany and was awarded his PhD in 1989. Working as a scientist, Dr. Emonts has been involved in extensive research and development projects in the areas of catalytic combustion and energy systems with low-temperature fuel cells. Between 1991 and 1994, he concurrently worked as an R & D advisor for a German industrial enterprise in the drying and coating technologies sector. In addition to his scientific activities at Jülich Research Center, Germany, Dr. Emonts lectured at Aachen University of Applied Sciences from 1999 to 2008. Dr. Emonts has published extensively in the field of Hydrogen Sciences and Fuel Cells.

Detlef Stolten is the Director of the Institute of Energy Research at the Forschungszentrum Jülich. Prof. Stolten received his doctorate from the University of Technology at Clausthal, Germany. He served many years as a Research Scientist in the laboratories of Robert Bosch and Daimler Benz/Dornier. In 1998 he accepted the position of Director of the Institute of Materials and Process Technology at the Research Center Jülich, Germany. Two years later he became Professor for Fuel Cell Technology at the University of Technology (RWTH) at Aachen. Prof. Stolten's research focuses on fuel cells, implementing results from research in innovative products, procedures and processes in collaboration with industry, contributing towards bridging the gap between science and technology. His research activities are focused on energy process engineering of SOFC and PEFC systems, i.e. electrochemistry, stack tech-nology, process and systems engineering as well as systems analysis. Prof. Stolten represents Germany in the Executive Committee of the IEA Annex Advanced Fuel Cells and is on the advisory board of the journal Fuel Cells. Dr. Bernd Emonts is the Deputy Director of the Institute of Energy Research at the Jülich Research Center, Germany. He received his diploma in structural engineering from the Aachen University of Applied Sciences, Germany, in 1981. He went on to specialize in the fundamentals of mechanical engineering at RWTH Aachen University, Germany and was awarded his PhD in 1989. Working as a scientist, Dr. Emonts has been involved in extensive research and development projects in the areas of catalytic combustion and energy systems with low-temperature fuel cells. Between 1991 and 1994, he concurrently worked as an R & D advisor for a German industrial enterprise in the drying and coating technologies sector. In addition to his scientific activities at Jülich Research Center, Germany, Dr. Emonts lectured at Aachen University of Applied Sciences from 1999 to 2008. Dr. Emonts has published extensively in the field of Hydrogen Sciences and Fuel Cells.

Hydrogen Science and Engineering: Materials, Processes, Systems and Technology 1
Contents 7
List of Contributors 33
Part 1. Sol-Gel Chemistry and Methods 43
1. Hydrogen in Refineries 45
1.1 Introduction 45
1.2 Hydroprocesses 46
1.2.1 Hydrotreating Processes 48
1.2.2 Hydrocracking Processes 50
1.2.3 Slurry Hydrocracking 52
1.2.4 Process Comparison 52
1.3 Refining Heavy Feedstocks 53
1.4 Hydrogen Production 54
1.5 Hydrogen Management 56
References 59
2. Hydrogen in the Chemical Industry 61
2.1 Introduction 61
2.2 Sources of Hydrogen in the Chemical Industry 64
2.2.1 Synthesis Gas-Based Processes 64
2.2.2 Steam Reforming 65
2.2.3 Process Variations 67
2.2.3.1 Partial Oxidation 67
2.2.3.2 Autothermal Reforming 67
2.2.3.3 Pre-reforming 67
2.2.3.4 Water-Gas Shift Conversion 68
2.2.3.5 Gasification 68
2.2.3.6 Other Waste and Coupled Streams 68
2.2.4 Electrolytic Processes 68
2.2.4.1 Alkaline Electrolysis 69
2.2.4.2 PEM Electrolysis 69
2.2.4.3 High-Temperature Electrolysis 69
2.2.5 Hydrogen Production Steam Reforming versus Electrolysis 70
2.2.6 Hydrogen as Coupled Stream in the Electrolytic Production of Chlorine 70
2.2.6.1 Membrane Cell Process 71
2.2.6.2 Mercury Cell Process 72
2.2.6.3 Daphragm Cell Process 73
2.2.6.4 New Developments 73
2.3 Utilization of Hydrogen in the Chemical Industry 74
2.3.1 Ammonia 74
2.3.2 Methanol 76
2.3.3 Other Uses and Applications of Hydrogen 78
2.3.4 Current Developments and Outlook 79
References 80
3. Chlorine-Alkaline Electrolysis - Technology and Use and Economy 83
3.1 Introduction 83
3.2 Production Technologies 84
3.2.1 Electrochemistry of Chlorine Production 84
3.2.2 Mercury Electrolyzer Technology 85
3.2.3 Diaphragm Electrolyzers 87
3.2.4 Ion Exchange Membrane Electrolyzers 88
3.2.5 Research 91
3.2.6 Breakthrough Technologies: Chlorine-Alkali Production with Oxygen Depolarized Cathode (ODC) 91
3.3 Use of Chlorine and Sodium Hydroxide 94
3.3.1 Chlorine 94
3.3.2 Sodium Hydroxide 95
3.3.3 Economy of Chlorine and Caustic Soda 95
3.3.4 Energy Savings 97
References 98
Part 2. Hydrogen as an Energy Carrier 99
Part 2.1. Introduction and National Strategies 99
4. Hydrogen Research, Development, Demonstration, and Market Deployment Activities 101
4.1 Introduction 101
4.2 Germany 102
4.2.1 Energy Framework and Relevant Policies 102
4.2.2 Hydrogen Related Energy Policy Strategies 102
4.2.3 Hydrogen Research, Development, Demonstration, and Deployment Activities 103
4.2.3.1 Transportation 103
4.2.3.2 Hydrogen Production 105
4.2.3.3 Stationary and Residential Applications 105
4.2.3.4 Special Markets 106
4.2.3.5 Industry Activity 106
4.3 Norway 107
4.3.1 Energy Framework and Relevant Policies 107
4.3.2 Hydrogen Related Energy Policy Strategies 107
4.3.3 Hydrogen Research, Development, Demonstration, and Deployment Activities 108
4.3.3.1 HyNor Project 109
4.3.3.2 ZEG Power 109
4.3.3.3 Transnova Hydrogen Projects 110
4.4 European Union 110
4.4.1 Energy Framework and Relevant Policies 110
4.4.2 Hydrogen Related Energy Policy Strategies 111
4.4.3 Hydrogen Research, Development, Demonstration, and Deployment Activities 111
4.5 Canada 112
4.5.1 Energy Framework and Relevant Policies 112
4.5.2 Hydrogen Related Energy Policy Strategies 116
4.5.3 Hydrogen Research, Development, Demonstration, and Deployment Activities 116
4.6 United States of America 118
4.6.1 Energy Framework and Relevant Policies 118
4.6.2 Hydrogen Related Energy Policy Strategies 118
4.6.3 Hydrogen Research, Development, Demonstration, and Deployment Activities 119
4.7 Japan 120
4.7.1 Energy Framework and Relevant Policies 120
4.7.2 Hydrogen Related Energy Policy Strategies 121
4.7.3 Hydrogen Research, Development, Demonstration, and Deployment Activities 122
4.8 International Networks 122
4.8.1 Hydrogen Implementing Agreement of the IEA 123
4.8.2 IPHE 123
4.8.3 EHA 123
4.8.4 International Association for Hydrogen Energy 124
Acknowledgment 124
References 124
Part 2.2. Thermochemical Hydrogen Production 127
5. Thermochemical Hydrogen Production - Solar Thermal Water Decomposition 129
5.1 Introduction 129
5.2 Historical Development 130
5.3 Present State of Work 131
5.3.1 Metal/Metal Oxide Thermochemical Cycles 131
5.3.1.1 FeO/Fe3O4 132
5.3.1.2 Ferrites 133
5.3.1.3 Hercynite Cycle 135
5.3.1.4 Manganese Ferrite plus Activated Sodium Carbonate 136
5.3.1.5 Zn/ZnO 136
5.3.1.6 CeO2/Ce2O3 137
5.3.2 Sulfur Cycles 138
5.3.2.1 Hybrid Sulfur Cycle (Westinghouse, Ispra Mark 11) 138
5.3.2.2 Mark 13 V2 140
5.3.2.3 Mark 13A 140
5.3.2.4 Sulfur-Iodine or General Atomics Process (ISPRA Mark 16) 141
5.3.3 Other Cycles 142
5.3.3.1 UT3 (Ca/Fe/Br Cycle) 143
5.3.3.2 Hybrid Copper-Chlorine Cycle 143
5.3.3.3 Uranium-Europium Cycle 144
5.4 Conclusion and Outlook 144
Nomenclature 145
References 145
6. Supercritical Water Gasification for Biomass-Based Hydrogen Production 151
6.1 Introduction 151
6.1.1 Hydrothermal Biomass Conversions 151
6.1.2 Properties of Water 153
6.2 Model Compounds 155
6.2.1 Glucose 155
6.2.2 Cellulose 157
6.2.3 Amino Acids 157
6.2.4 Phenols 157
6.2.5 Others 158
6.3 Biomass 158
6.3.1 Influence of Salts 160
6.3.2 Influence of Proteins 160
6.3.3 Influence of Lignin 160
6.4 Catalysts 161
6.5 Challenges 161
6.5.1 Heating-Up 161
6.5.2 Heat Recovery 162
6.5.3 Yields 162
6.5.4 Salt Deposition 163
6.5.5 Material Choice 163
6.5.6 Catalyst Stability 164
6.6 Scale-Up and Technical Application 164
6.7 New Developments 164
6.8 Conclusion 165
References 165
7. Thermochemical Hydrogen Production - Plasma-Based Production of Hydrogen from Hydrocarbons 173
7.1 Introduction 173
7.2 Non-thermal Plasma 174
7.2.1 Gliding-Arc Plasma 174
7.2.2 Microwave Plasma 178
7.2.3 Dielectric Barrier Discharge (DBD) Plasma 181
7.2.4 Corona Discharge 184
7.2.5 Spark and Pulsed Plasmas 184
7.3 Thermal Plasma 186
7.3.1 DC Torch Plasma 186
7.3.2 Three-Phase AC Plasma 187
7.3.3 DC-RF Plasma 187
7.4 Concluding Remarks 188
Acknowledgment 189
References 189
8. Solar Thermal Reforming 193
8.1 Introduction 193
8.2 Hydrogen Production via Methane Reforming 194
8.2.1 Thermochemistry and Thermodynamics of Reforming 194
8.2.2 Current Industrial Status 195
8.3 Solar-Aided Methane Reforming 196
8.3.1 Solar Concentration Systems 196
8.3.2 Coupling Reforming with Solar Energy: Solar Receiver-Reactor Concepts 196
8.3.3 Worldwide Research into Solar Thermal Reforming of Methane 199
8.3.3.1 Indirectly Heated Reactors 201
8.3.3.2 Directly Irradiated Reactors 205
8.4 Current Development Status and Future Prospects 209
References 211
9. Fuel Processing for Utilization in Fuel Cells 215
9.1 Introduction 215
9.2 Scope of the Work and Methodical Approach 216
9.3 Chemical Engineering Thermodynamics 217
9.3.1 Thermodynamic Property Relations 217
9.3.2 Chemical Equilibrium 220
9.4 Unit Operations 222
9.4.1 Catalytic Reactors 222
9.4.1.1 Hydrogen Generation 223
9.4.1.2 Water-Gas Shift Reaction 226
9.4.1.3 Preferential Oxidation 228
9.4.1.4 Selective CO Methanation 229
9.4.1.5 Catalytic Combustion 230
9.4.2 Separation Devices 231
9.4.2.1 Adsorption Process 231
9.4.2.2 Membrane Process 231
9.4.3 Balance-of-Plant Components 233
9.4.3.1 Pumps and Compressors 233
9.4.3.2 Heat Exchangers and Evaporators 234
9.5 Subsystems of Fuel Processing 234
9.5.1 Optimization of the Subsystem Reforming 235
9.5.1.1 Process Selection and Optimization 235
9.5.1.2 Catalyst Development 242
9.5.1.3 Current Challenges in Fuel Processing 243
9.5.1.4 Technical Outlook 246
9.5.2 Design of Complete Gas Cleaning System 247
9.6 Conclusion 250
Acknowledgments 251
References 251
10. Small-Scale Reforming for On-Site Hydrogen Supply 259
10.1 Introduction 259
10.2 Definition 260
10.3 Reforming Technologies 261
10.3.1 Steam Methane Reforming (SMR) 261
10.3.2 Partial Oxidation 262
10.3.3 Hydrogen Purity 263
10.4 Feedstock Options 265
10.4.1 Upgraded Biogas 265
10.4.2 Biomethanol and bioDME 266
10.4.3 Biodiesel 266
10.4.4 Biopropane 267
10.5 Suppliers and Products 267
10.5.1 Cost Trends 267
10.5.1.1 Central Plant Production 267
10.5.1.2 On-Site SR 268
10.5.1.3 Economics: On-Site versus Central Plant Production 269
10.6 Emerging Technologies 270
10.6.1 Material Development 271
10.6.2 Reactor Improvements and Design Aspects 272
10.6.3 Clean-Up Technology 272
10.6.4 Small-Scale CO2 Capture 273
10.7 Process Control 274
10.7.1 Condition Monitoring 274
10.7.2 Control Structures 275
10.8 Safety 276
10.9 Conclusion 277
References 277
11. Industrial Hydrogen Production from Hydrocarbon Fuels and Biomass 279
11.1 Options to Produce Hydrogen from Fuels-An Overview 279
11.2 Hydrogen Production from Solid Fuels (Coal, Biomass) 284
11.2.1 Basic Principles and Reactions of Syngas Production from Solid Fuels 284
11.2.2 Hydrogen Production by Gasification of Solid Fuels 284
11.3 Syngas by Partial Oxidation of Heavy Oils 286
11.4 Syngas by Steam Reforming of Natural Gas 288
11.5 Conclusions 291
References 293
Part 2.3. H2 from Electricity 295
12. Electrolysis Systems for Grid Relieving 297
12.1 Introduction 297
12.2 Energy Policies around the Globe Drive Demand for Energy Storage 298
12.3 The Options for Integration of Intermittent Renewable Energy Sources 303
12.4 The Evolution of the Demand for Energy Storage 310
12.5 The Role of Electrolyzers in the Energy Transition 312
12.6 The Overall Business Case and Outlook 316
12.6.1 De-carbonization of all Energy Sectors and the Chemical Industry 317
12.6.2 Combination of Low-Cost Power Generation with Low-Cost Gas Infrastructure 318
12.6.3 Grid-Scale Renewable Energy Storage 318
12.6.4 Optimization of Power System Operation with Intermittent Generators 319
12.7 Conclusions 320
References 321
13. Status and Prospects of Alkaline Electrolysis 325
13.1 Introduction 325
13.2 Thermodynamic Consideration 327
13.2.1 Theoretical Cell Voltages 327
13.3 Electrode Kinetics 329
13.3.1 Hydrogen Generation Overpotential 330
13.3.2 Oxygen Generation Overpotential 332
13.3.3 Cell Overpotential 333
13.4 Electrical and Transport Resistances 334
13.4.1 Electrical Resistances 334
13.4.2 Bubble Phenomena 335
13.4.2.1 Bubble Departure Diameter Predictions 335
13.4.2.2 Comparison of Model Predictions with Experimental Observations 338
13.5 Research Trends 339
13.5.1 Electrodes 339
13.5.2 Electro-Catalysts 340
13.5.3 Electrolyte and Additives 344
13.5.4 Bubble Management 344
13.6 Summary 345
References 346
14. Dynamic Operation of Electrolyzers - Systems Design and Operating Strategies 351
14.1 Introduction 351
14.2 Process Steps and System Components 352
14.2.1 Alkaline Electrolysis 353
14.2.2 PEM Electrolysis 354
14.2.3 Gas Separation 355
14.2.4 Compression 356
14.2.5 Gas Drying 358
14.2.6 Power Supply 359
14.3 Dynamic Operation of Electrolyzers 359
14.3.1 Operation Range 360
14.3.2 Dynamic System Response 362
14.3.3 Startup and Shutdown 364
14.4 System Design Criterion 364
14.4.1 System Efficiency 364
14.4.2 Investment Cost and Hydrogen Production Costs 367
14.4.3 Lifetime 368
14.4.4 Safety 369
14.5 Conclusion 369
References 370
15. Stack Technology for PEM Electrolysis 373
15.1 Introduction to Electrolysis 373
15.1.1 History of PEM Electrolysis 375
15.1.2 Challenges Facing PEM Electrolysis 376
15.2 General Principles of PEM Electrolysis 377
15.2.1 State-of-the-Art 377
15.2.2 Stack Design 380
15.2.2.1 Catalyst Coated Membranes (CCMs) 380
15.2.2.2 Porous Transport Layer (PTL) 382
15.2.2.3 Separator Plates 385
15.2.2.4 Stack Operation 387
15.2.3 Future Trends in PEM Electrolysis 391
15.2.3.1 Cost Reduction 392
15.3 Summary 397
References 398
16. Reversible Solid Oxide Fuel Cell Technology for Hydrogen/Syngas and Power Production 401
16.1 Introduction 401
16.2 Reversible Solid Oxide Fuel Cell Overview 401
16.2.1 Operating Principles 401
16.2.2 Features 403
16.3 Solid Oxide Fuel Cell Technology 408
16.4 Solid Oxide Electrolysis Cell Technology 414
16.5 Reversible Solid Oxide Fuel Cell Technology 421
16.6 Summary 425
References 425
Part 2.4. H2 from Biomass 433
17. Assessment of Selected Concepts for Hydrogen Production Based on Biomass 435
17.1 Introduction 435
17.2 Characteristics of Selected Hydrogen Concepts 436
17.2.1 Concepts under Discussion 436
17.2.2 Concepts for Further Assessment 440
17.2.2.1 Concept A - Wood Chip Gasification 440
17.2.2.2 Concept B - Biogas Reforming 440
17.2.2.3 Concept for Hydrogen Distribution of Produced Hydrogen 441
17.3 Concept Assessment of Technical Aspects 443
17.3.1 Methodical Approach 443
17.3.2 Overall Efficiencies 443
17.4 Concept Assessment of Environmental Aspects 444
17.4.1 Methodical Approach 445
17.4.2 GHG Emissions 445
17.4.3 Cumulated Non-renewable Energy Demand 447
17.5 Concept Assessment of Economic Aspects 448
17.5.1 Methodical Approach 448
17.5.2 Total Capital Investments of Hydrogen Production 449
17.5.3 Hydrogen Production Costs 450
17.5.4 Hydrogen Distribution Costs 452
17.6 Summary 453
Acknowledgment 453
References 454
18. Hydrogen from Biomass - Production Process via Fermentation 459
18.1 Introduction 459
18.1.1 Current Energy Scenario 459
18.1.2 Importance and Applications of Hydrogen as a Fuel 461
18.1.3 Conventional Hydrogen Production 461
18.1.4 Biological Hydrogen Production 461
18.1.4.1 Biochemistry behind Thermophilic Biohydrogen Production via Dark Fermentation 462
18.1.4.2 Microbial Characteristics of Thermophilic Hydrogen Producing Bacteria 463
18.2 Hydrogen Production from Biomass as Feedstock 464
18.2.1 Agricultural Residues 465
18.2.2 Municipal Solid Waste and Sewage 466
18.2.3 Industrial Residues 466
18.2.3.1 Distillery Industry Waste 467
18.2.3.2 Food Industry Waste 467
18.3 Reactor Configurations and Scale-Up Challenges 469
18.3.1 Reactor Configurations 469
18.3.2 Current Status of Technologies Available on Scale Up 471
18.4 Economics and Barriers 472
18.5 Future Prospects 473
18.6 Conclusion 473
Acknowledgment 474
References 474
Part 2.5. Hydrogen from Solar Radiation and Algae 481
19. Photoelectrochemical Water Decomposition 483
19.1 Introduction 483
19.2 Principles of Photoelectrochemical Water Splitting 484
19.2.1 Photoelectrochemical Cells with a Single Photoelectrode 485
19.2.2 Photoelectrochemical Cells with Two Photoelectrodes 488
19.2.3 Electrocatalysts and Overvoltage 490
19.3 Design of Water Splitting Devices 490
19.4 Nano- and Microstructured Photoelectrodes 497
19.5 Economic Aspects 499
19.6 Concluding Remarks 499
References 500
20. Current Insights to Enhance Hydrogen Production by Photosynthetic Organisms 503
20.1 Introduction 503
20.2 Biological H2 Production 505
20.3 Physiology and Biochemistry of Algae and Cyanobacteria for H2 Production 507
20.4 Hydrogenase and Nitrogenase for H2 Production 508
20.4.1 Hydrogenase and H2 Production 508
20.4.2 Uptake Hydrogenase and Hydrogen Production 509
20.4.3 Nitrogenase and H2 Production 511
20.5 Photosystems and H2 Production 511
20.6 Factors Affecting Hydrogen Production 512
20.7 Designing the Photosynthetic H2 Production 513
20.8 Leaf and Solar H2 Production 514
20.9 Biofuel and Hydrogen Production by Other Organisms 515
20.10 Available Methods to Enhance Photosynthetic Hydrogen Production 516
20.10.1 Photolytic H2 Production by Microorganisms 516
20.10.2 Photosynthetic Bacterial H2 Production 517
20.10.3 Dark Fermentative H2 Production 517
20.10.4 Genetic Engineering to Enhance Hydrogen Production 518
20.11 Application of Biohydrogen 519
20.12 Conclusion and Future Prospectus 519
Acknowledgments 520
Abbreviations 520
References 520
Part 2.6. Gas Clean-up Technologies 531
21. PSA Technology for H2 Separation 533
21.1 Introduction 533
21.2 Basics of PSA Technology 534
21.3 Selective Adsorbents Commercial and New Materials
21.4 Improving the PSA Cycle 543
21.5 Summary 545
Acknowledgments 546
References 546
22. Hydrogen Separation with Polymeric Membranes 551
22.1 History 551
22.2 Basics of Membrane Gas Separation 552
22.3 Hydrogen Separation and Fractionation by Gas Permeation 558
22.3.1 Hydrogen/Nitrogen Separation 559
22.3.2 Hydrogen/Carbon Monoxide Separation 559
22.3.3 Hydrogen/Hydrocarbon Separation 560
22.3.4 Hydrogen Separation and Fractionation Applications in Renewable Hydrogen Production 561
22.4 Membrane Materials and Modules 561
22.4.1 Membrane Classification 561
22.4.1.1 Morphological Classification 562
22.4.1.2 Geometrical Classification 565
22.4.2 Membrane Defect Curing 566
22.4.3 Membrane Module Classification 567
22.4.3.1 Hollow Fiber Modules 567
22.4.3.2 Flat Sheet Modules 568
22.4.4 Membrane Material Classification 570
22.4.4.1 Membranes Based on Rubbery Polymers 570
22.4.4.2 Glassy Polymer Based Membranes 572
22.5 Process Examples 573
22.5.1 Hydrogen Separation from Purge Streams in Ammonia Production 573
22.5.2 Hydrogen Separation from Hydrocracker Flash Gas 574
22.5.3 Carbon Dioxide Removal from Biomass Gasification Product Gas 576
22.6 Conclusions 577
Nomenclature 578
References 579
23. Gas Clean-up for Fuel Cell Systems - Requirements and Technologies 585
23.1 Introduction 585
23.2 Background 585
23.3 Fuel and Pollutants 587
23.3.1 Main Gas Components 587
23.3.1.1 Hydrogen 588
23.3.1.2 Carbon Monoxide 588
23.3.1.3 Methane 588
23.3.1.4 Carbon Dioxide 589
23.3.1.5 Nitrogen 589
23.3.1.6 Steam 589
23.3.2 Trace Gas Components 589
23.3.2.1 Tars 589
23.3.2.2 Particulate Matter (Particles) 591
23.3.2.3 Alkali Compounds 591
23.3.2.4 Sulfur Compounds 591
23.3.2.5 Nitrogen Compounds 592
23.3.2.6 Halogen Compounds 592
23.3.2.7 Siloxanes 592
23.3.2.8 Other Potential Contaminants 592
23.4 Pollutant Level Requirements 592
23.5 Technologies to Remove Pollutants 593
23.5.1 Cold Gas Clean-Up 594
23.5.2 Hot Gas Clean-Up 594
23.5.3 Particulate Matter 594
23.5.4 Alkali Components 597
23.5.5 Tars and Higher Hydrocarbons 597
23.5.5.1 Thermal Cracking 598
23.5.5.2 Catalytic Reduction 599
23.5.6 Sulfur Components 600
References 601
Part 3. Hydrogen for Storage of Renewable Energy 605
24. Physics of Hydrogen 607
24.1 Introduction 607
24.2 Molecular Hydrogen 607
24.2.1 The H2 Molecule 607
24.2.1.1 Covalent Bonding and Molecular Orbitals 607
24.2.1.2 Natural Isotopes 608
24.2.1.3 Nuclear Spin-States, Ortho- and Para-H2 608
24.2.2 Thermodynamic Properties 611
24.2.2.1 Pressure-Temperature Phase Diagram 611
24.2.2.2 Pressure-Volume Phase Diagram 613
24.2.2.3 Joule-Thomson Effect 614
24.2.3 Reaction Kinetics 616
24.2.3.1 Reaction with O2 - Thermodynamics 616
24.2.3.2 Reaction with O2 - Microscopic Mechanisms 616
24.2.3.3 Reaction with O2 - Explosion Limits 619
24.2.4 Transport Kinetics 620
24.2.4.1 Thermal Conductivity 620
24.2.4.2 Diffusion in Gasses 621
24.2.4.3 Permeation and Diffusion in Polymers 622
24.2.4.4 Permeation and Diffusion in Metals 625
24.3 Hydrides 630
24.3.1 Classification and Properties of Hydrides 630
24.3.1.1 Ionic Hydrides 630
24.3.1.2 Covalent Hydrides 632
24.3.1.3 Complex Hydrides (Hydrido Complexes) 633
24.3.1.4 Interstitial (Metallic) Hydrides 634
24.3.2 Formation of Hydrides 635
24.3.2.1 Ionic and Covalent Hydrides 635
24.3.2.2 Interstitial (Metallic) Hydrides 636
24.3.3 Clathrates 639
References 640
25. Thermodynamics of Pressurized Gas Storage 643
25.1 Introduction 643
25.2 Calculation of Thermodynamic State Variables 644
25.2.1 Ideal Gases 644
25.2.2 Real Gases 645
25.3 Comparison of Thermodynamic Properties 648
25.3.1 Compressibility Factor 648
25.3.2 Joule-Thomson Coefficient 649
25.3.3 Isentropic Exponent 651
25.4 Thermodynamic Analysis of Compression and Expansion Processes 652
25.4.1 Isothermal and Isentropic Compression 653
25.4.2 Isenthalpic and Isentropic Expansion 657
25.5 Thermodynamic Modeling of the Storage Process 659
25.5.1 Governing Equations 659
25.5.2 Heat Transfer Equations 661
25.6 Application Examples 662
25.6.1 Refueling of a Vehicle Storage Tank 662
25.6.2 Salt Cavern 664
25.7 Conclusion 666
References 667
26. Geologic Storage of Hydrogen - Fundamentals, Processing, and Projects 671
26.1 Introduction 671
26.2 Fundamental Aspects of Geological Hydrogen Storage 673
26.2.1 Physicochemical Properties of Hydrogen and Hydrogen Mixtures 673
26.2.2 Interaction between Hydrogen and Microbial Inventories 676
26.2.3 General Types of Geological Storage Option 677
26.2.4 Hydrogen Storage in Porous Rocks 678
26.2.5 Hydrogen Storage in Caverns 682
26.3 Process Engineering 684
26.3.1 Gas Transport: Pipelines and Tubing 684
26.3.2 Compressors 685
26.3.3 Metering 686
26.3.4 Controlling and Safety Components 686
26.3.5 Geologic Storages: Survey 687
26.3.6 Geologic Storages: Construction 688
26.3.7 Geologic Storages: Initial Testing 689
26.3.8 Geologic Storages: Operation 690
26.4 Experiences from Storage Projects 691
26.4.1 Hydrogen Storage Projects 692
26.4.2 Pure Hydrogen Storage Projects 692
26.4.2.1 Clemens Dome, Texas, USA 692
26.4.2.2 Moss Bluff, Texas, USA 692
26.4.2.3 Teesside Project, Yorkshire, UK 693
26.4.3 Town Gas Storages 693
26.4.3.1 Town Gas Storage at Ketzin, Germany 694
26.4.3.2 Town Gas Storage at Lobodice, Czech Republic 694
26.4.3.3 Town Gas Storage at Beynes, Ile de France, France 696
26.5 Concluding Remarks 696
References 697
27. Bulk Storage Vessels for Compressed and Liquid Hydrogen 701
27.1 Introduction 701
27.2 Stationary Application Areas and Requirements 702
27.3 Storage Parameters 703
27.4 Compressed Hydrogen Storage 704
27.4.1 Hydrogen Compression 704
27.4.2 Hydrogen Pressure Vessels 705
27.4.2.1 Conventional Small-Scale Bulk Storage 705
27.4.2.2 Current and Potential Small- to Medium-Scale Bulk Storage 707
27.4.2.3 New Ideas for Medium-Scale Bulk Storage 711
27.5 Cryogenic Liquid Hydrogen Storage 712
27.5.1 Hydrogen Liquefaction 712
27.5.2 Liquid Hydrogen Storage Tanks 713
27.6 Cost Estimates and Economic Targets 717
27.7 Technical Assessment 720
27.8 Conclusion 725
References 726
28. Hydrogen Storage in Vehicles 733
28.1 Introduction: Requirements for Hydrogen Storage in Vehicles 733
28.2 Advantages of Pressurized Storage over Other Storage Methods 735
28.3 Design of a Tank System 737
28.3.1 Flow Diagram and Description of the Components 737
28.3.2 Container 739
28.4 Specific Requirements for Compressed Gas Systems for Vehicles 741
28.4.1 Legal and Normative Requirements 741
28.4.2 Refueling 742
28.5 Special Forms of Compressed Gas Storage 746
28.5.1 Parallel Hydride and Compressed Gas Storage 746
28.5.2 Metal Hydride-Filled Pressure Containers 747
28.5.3 Conformable Containers 747
28.6 Conclusion 749
References 749
29. Cryo-compressed Hydrogen Storage 753
29.1 Motivation for Cryo-compressed Hydrogen Vehicle Storage 753
29.2 Thermodynamic Opportunities 756
29.3 Refueling and Infrastructure Perspectives 759
29.4 Design and Operating Principles 761
29.4.1 System Design 762
29.4.2 Operating Principles 764
29.5 Validation Challenges of Cryo-compressed Hydrogen Vehicle Storage 767
29.5.1 Validation Procedure 768
29.5.2 Validation Challenges and Opportunities 771
29.5.3 Hydrogen Safety Validation 772
29.6 Summary 773
References 773
30. Hydrogen Liquefaction 775
30.1 Introduction 775
30.2 History of Hydrogen Liquefaction 776
30.3 Hydrogen Properties at Low Temperature 777
30.3.1 Thermodynamic Properties 777
30.3.2 Ortho and Para Modifications of Hydrogen 777
30.3.2.1 Underlying Physics 777
30.3.2.2 Ortho-to-Para Conversion and Liquefaction of Hydrogen 779
30.3.2.3 Available Data 780
30.3.2.4 Some Useful Thermodynamics 780
30.4 Principles of Hydrogen Liquefaction 781
30.4.1 Power Requirements 781
30.4.2 General Principle 782
30.4.3 Simple Joule-Thomson Process with Nitrogen Precooling 784
30.4.3.1 Basic Process 784
30.4.3.2 Integration of Ortho-to-Para Conversion 786
30.4.4 Evolution of the Hydrogen Liquefaction Processes 787
30.4.5 Process Design of the Precooling Part 787
30.4.6 Precooling by Nitrogen Brayton Cycle 788
30.4.6.1 Process Description 788
30.4.6.2 Evaluation 790
30.4.7 Mixed Gas Refrigeration for Precooling Purposes 790
30.4.8 Final Cooling 791
30.5 Key Hardware Components 793
30.5.1 Compression 794
30.5.1.1 Impact of the Isentropic Exponent 794
30.5.1.2 Low Density 795
30.5.1.3 Screw Compressor 795
30.5.1.4 Reciprocating (Piston) Compressors 797
30.5.2 Expansion Turbine (or Expander or Turbine) 797
30.5.2.1 Oil Bearing 798
30.5.2.2 Gas Bearing 799
30.5.3 Heat Exchangers 800
30.6 Outlook 802
References 803
31. Hydrogen Storage by Reversible Metal Hydride Formation 805
31.1 Introduction 805
31.2 Summary of Energy Relevant Properties of Hydrogen and its Isotopes 806
31.3 Hydrogen Interaction with Metals, Alloys and Other Inorganic Solids 806
31.4 Hydrogen Storage in Intermetallic Compounds 809
31.4.1 AB5 Type Compounds 813
31.4.2 AB2 Type Hydrogen Absorbing Alloys 813
31.4.3 AB Type Alloy TiFe 814
31.4.4 Intermetallic Hydrides 815
31.5 Hydrogen Storage in Complex Hydrides 815
31.5.1 Alanates (tetrahydroaluminate) 816
31.5.2 Amides 817
31.5.3 Borohydrides (Tetrahydroborate) 821
31.6 Physisorption and High Open-Porosity Structures for Molecular Hydrogen Storage 823
31.7 Other Energy Relevant Applications of Hydrogen Interacting Materials 826
31.8 Conclusions and Outlook 827
References 828
32. Implementing Hydrogen Storage Based on Metal Hydrides 833
32.1 Introduction 833
32.2 Material Requirements 834
32.2.1 Operating Temperatures 834
32.2.2 Material Thermodynamics 836
32.2.3 Containment Tank 836
32.2.4 Buffer Hydrogen 838
32.2.5 Desorption Kinetics 839
32.2.6 Sorption Kinetics 840
32.2.7 Material Compaction and Heat Transfer 841
32.3 Reverse Engineering: A Case Study 842
32.3.1 MH Refueling: Temperature Profile and Conversion 844
32.3.2 System Analysis Model 845
32.3.3 Reference Targets 846
32.3.4 Sensitivity Study 847
32.4 Summary and Conclusions 849
Acknowledgments 850
References 850
33. Transport and Storage of Hydrogen via Liquid Organic Hydrogen Carrier (LOHC) Systems 853
33.1 Hydrogen Storage and Transport for Managing Unsteady Renewable Energy Production 853
33.2 Liquid Organic Hydrogen Carrier (LOHC) Systems 856
33.3 Development of LOHC-Based Energy Storage Systems 861
33.4 Applications of LOHC-Based Energy Storage Systems 864
33.4.1 LOHC Systems for the Storage of Renewable Energy Equivalents, in Particular for Decentralized Storage in Heat-Storage Coupling 865
33.4.2 Energy Transport over Long Distances with LOHC 866
33.4.2.1 Import of Solar Energy from Northern Africa 867
33.4.2.2 Import of Renewable Energy from Iceland 868
33.4.3 Mobile Applications 869
33.5 Conclusions 870
References 871
Part 4. Traded Hydrogen 873
34. Economics of Hydrogen for Transportation 875
34.1 Introduction 875
34.2 Hydrogen Transportation System 875
34.2.1 FCEVs 875
34.2.2 Hydrogen Infrastructure 877
34.3 Economics of Hydrogen for Transportation 878
34.3.1 Hydrogen Cost 878
34.3.1.1 Two Approaches for Hydrogen Cost Calculation 878
34.3.1.2 Bottom-Up Approach for Hydrogen Cost 878
34.3.1.3 Top-Down Approach for Hydrogen Cost 881
34.3.1.4 Total Cost of Ownership (TCO) Approach 883
34.3.2 Economics of Social Cost and Benefits 883
34.3.2.1 Social Costs 884
34.3.2.1.1 Subsidy, Tax Credits, or Incentives to Promote New Powertrains 884
34.3.2.1.2 Subsidy to Build New Infrastructure 885
34.3.2.2 Social Benefits 885
34.4 Conclusion 887
References 888
35. Challenges and Opportunities of Hydrogen Delivery via Pipeline, Tube-Trailer, LIQUID Tanker and Methanation-Natural Gas Grid 891
35.1 Introduction 891
35.2 Variation in Demand for Hydrogen 892
35.3 Refueling Station Components and Layout 894
35.3.1 Gaseous Hydrogen Refueling Station 894
35.3.2 Cryo-Compressed and Gaseous Refueling Station with Liquid Delivery 896
35.3.3 Refueling Station Challenges 896
35.4 Distributed Production of Hydrogen 898
35.5 Central or Semi-central Production of Hydrogen 899
35.5.1 Gaseous Hydrogen Delivery 899
35.5.1.1 Pipeline Delivery Pathway 899
35.5.1.2 Tube-Trailer Delivery Pathway 902
35.5.1.3 Challenges 905
35.5.2 Liquid Hydrogen Delivery Pathway 906
35.5.2.1 Components Layout 906
35.5.2.2 Cost Estimates 906
35.5.2.3 Challenges 907
35.6 Power-to-Gas Mass Energy Solution (Methanation) 908
35.6.1 Hydrogen Methanation Process 908
35.6.2 Current Applications 909
35.6.3 Challenges and Opportunities 911
35.7 Outlook and Summary 912
Note 913
References 914
36. Pipelines for Hydrogen Distribution 917
36.1 Introduction 917
36.2 Overview 917
36.2.1 Pipelines in Comparison to Other Transportation Possibilities 917
36.2.2 An Overview of Existing Hydrogen Pipelines 918
36.2.3 Some Material Concerns 919
36.3 Brief Summary of Pipeline Construction 921
36.3.1 Planning and Approval 921
36.3.2 Assessment of Preferred Pipeline Routes and Alternative Routes 922
36.3.3 Project Execution, Construction and Commissioning 925
36.4 Operation of an H2 Pipeline 928
36.4.1 The Control Center 928
36.4.2 Operations 929
36.5 Decommissioning/Dismantling/Reclassification 930
36.6 Conclusion 930
References 931
37. Refueling Station Layout 933
37.1 Introduction 933
37.2 Basic Requirements for a Hydrogen Refueling Station 934
37.2.1 Car Refueling 934
37.2.2 Bus Refueling 936
37.3 Technical Concepts for Hydrogen Filling Stations 937
37.3.1 Hydrogen Production 937
37.3.1.1 Hydrogen Production from Biomass 938
37.3.1.2 Electrolysis 939
37.3.1.3 Steam Reforming 942
37.3.1.4 Byproduct Hydrogen 942
37.3.1.5 Biological Hydrogen Production 942
37.3.2 Hydrogen Delivery 942
37.3.2.1 CGH2 Delivery 943
37.3.2.2 LH2 Delivery 943
37.3.2.3 Pipeline Delivery 943
37.3.3 Major Components of Hydrogen Refueling Stations 944
37.3.3.1 Production 944
37.3.3.2 Hydrogen Storage 944
37.3.3.3 Compressors 945
37.3.3.4 Pre-cooling 946
37.3.3.5 Dispenser 947
37.3.3.6 Controls 947
37.3.4 Integration of Hydrogen Refueling Stations 948
37.3.5 Facility Size/Space Requirements 949
37.4 Challenges 949
37.4.1 Standardization 949
37.4.2 Costs 951
37.4.3 Reliability 952
37.4.4 Approval Processes 952
37.4.5 Gauged H2-Metering 953
37.4.6 Refueling According to Technical Guidelines 953
37.4.7 Hydrogen Quality 954
37.5 Conclusion 955
References 956
Part 5. Handling of Hydrogen 959
38. Regulations and Codes and Standards for the Approval of Hydrogen Refueling Stations 961
38.1 Introduction 961
38.1.1 Explanation of the term “Regulations, Codes and Standards (RCS)” 961
38.1.1.1 Regulations 961
38.1.1.2 Codes of Practice 962
38.1.1.3 Standards 963
38.1.1.4 Referencing of standards 964
38.1.1.5 Why Globally Harmonized Standards are Needed 965
38.1.2 General Requirements for the Approval of Hydrogen Refueling Stations (HRSs) 965
38.2 European Union and Germany 966
38.2.1 Europe 966
38.2.2 Germany 970
References 972
39. Safe Handling of Hydrogen 975
39.1 Introduction 975
39.2 Hydrogen Safety and the Elements of Risk 976
39.2.1 Assessing Risk 977
39.2.2 Current Shortcomings of QRA for Hydrogen Safety 977
39.3 The Unique, Safety-Related Properties of Hydrogen 979
39.4 General Considerations for the Safe Handling of Hydrogen 980
39.4.1 Gaseous Hydrogen 981
39.4.2 Liquid Hydrogen 981
39.4.3 Handling Emergencies 982
39.5 Regulations, Codes, and Standards 982
39.6 International Collaborations to Prioritize Hydrogen Safety Research 984
39.6.1 Survey of Hydrogen Risk Assessment Methods, 2008 984
39.6.2 Knowledge Gaps White Paper, 2008 984
39.6.3 Comparative Risk Assessment Studies of Hydrogen and Hydrocarbon Fueling Stations, 2008 985
39.7 Current Directions in Hydrogen Safety Research [6] 985
39.7.1 Research on the Physical Behavior of Leaked or Leaking Hydrogen 985
39.7.2 Hydrogen Storage Systems Safety Research 986
39.7.3 Research that Supports Early Market Applications 987
39.7.4 Research on Risk Mitigation Measures 987
39.7.5 Simplified Tools to Assess and Mitigate Risk 989
39.8 Summary 989
References 990
Bibliography 990
Part 6. Existing and Emerging Systems 991
40. Hydrogen in Space Applications 993
40.1 Liquid Hydrogen for Access to Space 993
40.1.1 Liquid Storage 993
40.1.2 Constraints Due to Liquid Hydrogen Use 994
40.1.3 Insulation 995
40.2 To Go Beyond GTO 996
40.2.1 Coasting Phase 996
40.2.2 Re-ignition Preparation Phase 997
40.3 Relevant Tests in Low Gravity Environment 1000
40.4 In-Space Propulsion 1002
40.5 Conclusion 1003
References 1005
41. Transportation/Propulsion/Demonstration/Buses: The Design of the Fuel Cell Powertrain for Urban Transportation Applications (Daimler) 1007
41.1 Introduction 1007
41.2 Operational Environment 1008
41.3 Requirements 1009
41.3.1 Propulsion Power to Drive 1009
41.3.2 Auxiliary Power Demand 1012
41.3.3 Heating and Air Condition Power Demand 1013
41.4 Design Solutions 1015
41.4.1 NEBUS 1015
41.4.1.1 Design Solution 1015
41.4.2 CUTE and HyFleet:CUTE Program 1017
41.4.3 Citaro FuelCELL-Hybrid 1020
41.5 Test and Field Experience 1024
41.5.1 NeBus 1024
41.5.2 CTA, CMBC 1024
41.5.3 CUTE and HyFleet:CUTE Program 1026
41.5.4 NaBuz DEMO and CHIC 1026
41.6 Future Outlook 1028
41.6.1 Transit Bus Applications 1028
41.6.2 Truck Applications 1029
41.6.3 Life Time and Product Costs 1031
41.6.4 Summary 1031
References 1032
42. Hydrogen and Fuel Cells in Submarines 1033
42.1 Background 1033
42.1.1 When it All Began . . . 1034
42.2 The HDW Fuel Cell AIP System 1034
42.3 PEM Fuel Cells for Submarines 1035
42.3.1 Introduction 1035
42.3.2 The Oxygen/Hydrogen Cell Design 1036
42.3.2.1 Constructive Features/Cell Design of Siemens PEM Fuel Cell 1036
42.3.2.2 Results from Fuel Cell Operation 1037
42.3.3 Constructive Feature of Fuel Cell Module for Submarine Use 1037
42.3.3.1 Preconditions 1037
42.3.3.2 Cascaded Fuel Cell Stacks [2] 1038
42.3.3.3 Pressure Cushion for Uniform Current Distribution [4] 1040
42.3.3.4 Fuel Cell Module 1041
42.3.3.5 Results from Fuel Cell Module Operation 1042
42.3.3.6 Safety Features of Submarine Fuel Cell Modules 1043
42.4 Hydrogen Storage 1044
42.5 The Usage of Pure Oxygen 1046
42.6 System Technology - Differences Between HDW Class 212A and Class 214 Submarines 1047
42.7 Safety Concept 1048
42.8 Developments for the Future - Methanol Reformer for Submarines 1048
42.8.1 System Configuration 1048
42.8.2 Challenges of the Methanol Reformer Development 1049
42.8.3 Hydrogen Purification Membranes 1050
42.8.4 High Pressure Catalytic Oxidation 1050
42.8.5 Integration on Board a Submarine 1050
42.9 Conclusion 1051
References 1052
43. Gas Turbines and Hydrogen 1053
43.1 Introduction 1053
43.2 Combustion Fundamentals of Hydrogen relevant for Gas Turbines 1054
43.2.1 Ignition Delay 1056
43.2.2 Flame Speed 1058
43.2.3 Flame Temperature, Stability, and Emissions 1060
43.3 State-of-the-art Gas Turbine Technology for Hydrogen 1061
43.4 Research and Development Status, New Combustion Technologies 1064
43.4.1 New Combustion Technologies 1066
43.4.1.1 MILD Combustion or Flameless Oxidation 1066
43.4.1.2 Lean Direct Injection, Multi-injection, and Micro-mixing 1068
43.5 Concluding Remarks 1070
References 1070
44. Hydrogen Hybrid Power Plant in Prenzlau, Brandenburg 1075
44.1 Introduction 1075
44.2 Description of the Concept of the Hybrid Power Plant at Prenzlau 1077
44.2.1 Overview 1077
44.2.2 Alkaline Electrolyzer 1078
44.2.3 Safety Engineering 1081
44.3 Operating Modes of the Hybrid Power Plant 1084
44.3.1 Hydrogen Production Mode 1084
44.3.2 Base Load Mode 1085
44.3.3 Forecast Mode 1086
44.3.4 EEX Mode 1087
44.4 Operational Management and Experiences 1087
44.4.1 Dynamic Load Operation 1087
44.4.2 Temperature Influence on Stack Voltage 1089
44.4.3 Influence of Activated Electrodes 1091
44.4.4 Voltage Efficiency of the Electrolyzer 1092
44.5 Outlook 1092
References 1093
45. Wind Energy and Hydrogen Integration Projects in Spain 1095
45.1 Introduction 1095
45.2 The Role of Hydrogen in Wind Electricity Generation 1097
45.2.1 Mini Grids 1098
45.2.2 Electricity Storage 1098
45.2.3 Fuel Production 1100
45.2.4 Comparison of the Three Configurations 1101
45.3 Description of Wind-Hydrogen Projects 1101
45.3.1 RES2H2 Project 1102
45.3.2 Hidrólica Project 1103
45.3.3 ITHER Project 1105
45.3.4 Sotavento Project 1106
45.4 Operation Strategies Tested in the Sotavento Project 1108
45.4.1 Peaking Plant Strategy 1109
45.4.2 Strategy of Deviation Correction 1111
45.4.3 Strategy for Increasing the Capacity Factor of the Wind Farm 1112
45.4.4 Load Leveling Enabling Distributed Generation or Island 1113
45.5 Conclusions 1113
References 1114
46. Hydrogen Islands - Utilization of Renewable Energy for an Autonomous Power Supply 1117
46.1 Introduction 1117
46.2 Existing Hydrogen Projects on Islands 1119
46.3 System Design/Configuration 1124
46.4 Key Technologies 1125
46.4.1 Electrolyzer 1125
46.4.2 Hydrogen Storage 1127
46.4.3 Fuel Cell 1128
46.5 System Issues 1129
46.5.1 Capacity Factor 1129
46.5.2 Coupling Efficiency 1129
46.5.3 Intermittent Operation 1130
46.5.4 Water Consumption 1130
46.5.5 Performance Degradation with Time 1130
46.6 Sizing 1130
46.7 Energy Management 1132
46.8 Other Uses/System Configurations 1134
46.8.1 Demand Side Management 1134
46.8.2 Seawater Desalination 1134
46.8.3 Oxygen Use 1135
46.8.4 Fuel for Vehicles 1135
46.9 Conclusions 1135
References 1136
Index 1139
EULA 1181

Erscheint lt. Verlag 4.1.2016
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik
Schlagworte Chemie • Chemistry • Electrochemistry • Elektrochemie • Energie • Energiespeicherung • Energy • Energy Storage • environmental storation • Materialien f. Energiesysteme • Materials for Energy Systems • Materials Science • Materialwissenschaften • Metalle u. Legierungen • Metals & Alloys • Nachhaltige u. Grüne Chemie • Nachhaltige u. Grüne Chemie • Nachhaltigkeit • Physical Chemistry • Physikalische Chemie • renewable energy • Sustainable Chemistry & Green Chemistry • Transportation safety • Wasserstoff
ISBN-10 3-527-67429-2 / 3527674292
ISBN-13 978-3-527-67429-9 / 9783527674299
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Gefüge von Metallen, Keramiken und Verbunden

von Heinrich Oettel; Gaby Ketzer-Raichle

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 95,70