Canopy Photosynthesis: From Basics to Applications (eBook)
428 Seiten
Springer Netherland (Verlag)
978-94-017-7291-4 (ISBN)
The last 30 years has seen the development of increasingly sophisticated models that quantify canopy carbon exchange. These models are now essential parts of larger models for prediction and simulation of crop production, climate change, and regional and global carbon dynamics. There is thus an urgent need for increasing expertise in developing, use and understanding of these models. This in turn calls for an advanced, yet easily accessible textbook that summarizes the 'canopy science' and introduces the present and the future scientists to the theoretical background of the current canopy models.
This book presents current knowledge of functioning of plant canopies, models and strategies employed to simulate canopy function, and the significance of canopy architecture, physiology and dynamics in ecosystems, landscape and biosphere.
The last 30 years has seen the development of increasingly sophisticated models that quantify canopy carbon exchange. These models are now essential parts of larger models for prediction and simulation of crop production, climate change, and regional and global carbon dynamics. There is thus an urgent need for increasing expertise in developing, use and understanding of these models. This in turn calls for an advanced, yet easily accessible textbook that summarizes the "e;canopy science"e; and introduces the present and the future scientists to the theoretical background of the current canopy models.This book presents current knowledge of functioning of plant canopies, models and strategies employed to simulate canopy function, and the significance of canopy architecture, physiology and dynamics in ecosystems, landscape and biosphere.
From the Series Editors 6
Series Editors 14
Contents 18
Preface 24
The Editors 26
Contributors 32
Author Index 34
Part I: Physical Processes in Leaf Canopies 35
Chapter 1: Light Distribution 36
I. Incoming Radiation 37
A. Its Total Value 37
B. Spectral Energy Distribution 37
C. Directional Distribution 38
Box 1.1: Solar Coordinates 38
D. Radiance and Irradiance 39
II. Modelling Radiation in Leaf Canopies 40
A. Black Horizontal Leaves 40
B. Non-horizontal Leaves 41
C. Leaf Angle Distribution 42
D. Leaf Scattering and Canopy Reflection 43
1. The Reflection Coefficient of a Leaf Canopy with a Large Leaf Area Index 44
2. Extinction of Radiation Within the Leaf Canopy 44
III. Absorption of Radiation in Row Crops 46
A. Directional Distribution of Incoming Radiation 46
B. Row Crops 46
1. Infinite LAI, Black Leaves 46
2. Non-infinite LAI, Black Leaves 47
3. Loss of Radiation due to Plant Arrangement in Rows 49
IV. Direct and Diffuse Light in Photosynthesis Modeling 49
Box 1.2: Example of Calculation of Photosynthesis When There Is only Diffuse Radiation 50
Box 1.3: Example of Calculation of Canopy Photosynthesis When There Is also Direct Radiation 53
V. Conclusions and Prospects 53
References 54
Chapter 2: Leaf Energy Balance: Basics, and Modeling from Leaves to Canopies 56
I. Introduction: Why Leaf Energy Balance is Important to Model 58
Box 2.1 Inferring Water Stress and Water Use from Leaf Temperature 60
II. Calculations of Leaf Energy Balance: Basic Processes in the Steady State 60
A. Energy Balance Equation in the Steady State 60
1. Chief Components of Leaf Energy Balance 60
2. Role of Energy Flows in Transient Heating, Photosynthesis, and Respiration 61
B. Defining the Individual Terms of the Energy Balance Equation 62
1. Shortwave Energy Input 62
2. Thermal Infrared Input 62
3. Thermal Infra-Red Losses 64
4. Latent Heat Loss 64
5. Convective Heat Exchange 65
6. Solving the Leaf Energy Balance Equation 65
Box 2.2 Iterative Solution of the Leaf Energy Balance Equation 65
C. Leaves in Artificial Environments: Growth Chambers, Greenhouses, and Warming Experiments 66
D. Detection of Leaf Temperature and of Energy-Balance Components 67
E. Meeting the Challenges of Measurement and Theory 68
III. Physiological Feedbacks Affecting Leaf Energy Balance 69
A. Dependence of Stomatal Conductance on Environmental Drivers 69
B. Biochemical Limitations of Photosynthesis 70
C. Solving a Combined Stomata-Photosynthesis Model 71
D. Advanced Problems 72
IV. Transients in Energy Balance and in Processes Dependent on Temperature 73
A. Independence of Different Leaf Regions 73
B. Dynamics in Leaf Temperature After Changes in Energy Balance Components 73
1. Time-Dependent Changes in Temperature After Modifications in Radiation Input 73
2. Changes in Temperature After Modifications in Convective Heat Exchange 76
3. Importance of Temperature Transients for Photosynthesis 76
V. Leaves in Canopies 77
A. General Principles 77
B. Modelling Turbulent Transport and Canopy Profiles of Environmental Drivers 78
VI. Outlook: Estimation of Large-Scale Fluxes using Leaf Temperature 80
Box 2.3 Radiative Temperatures Add in a Nonlinear Fashion 83
Box 2.4 Difficulties in Separating Fluxes from Soil and from Vegetation 84
VII. Encouragement 86
References 86
Part II: Physiological Processes from Leaves to Canopies 92
Chapter 3: Modeling Leaf Gas Exchange 93
I. Introduction 95
II. Biochemical Model of C3 Photosynthesis 96
Box 3.1: Biochemical Model of C4 Photosynthesis 100
III. Respiration 101
A. Dark and Day Respiration 102
Box 3.2: Measurement of Dark and Day Respiration Rates in Leaves 104
A. The Laisk Method 104
B. The Kok Method 106
C. A Modified Kok Method 106
D. The 14C-labelling Method 107
E. The Methods Using the Stable Isotopes 107
B. Temperature Dependence 107
C. Construction and Maintenance Respiration 109
D. The Flux Balance Model 110
IV. Diffusion of CO2 and H2O 110
A. Conductance and Assimilation Rate 110
B. Stomatal Conductance 111
C. Mesophyll Conductance 114
V. Leaf Heat Exchange 115
VI. Environmental Responses of Net CO2 Assimilation Rate 117
A. CO2 Response 117
B. Light Response 117
C. Temperature Response 117
D. Photoinhibition 119
E. Modeling Diurnal Change in Gas Exchange Rates of a Leaf 120
VII. Variations in Parameters of the Biochemical Leaf Photosynthesis Model among Leaves and among Species 120
A. Rubisco Kinetics 120
B. Vcmax and Jmax 121
C. Initial Slope of the Light-Response Curve 122
D. Temperature Dependence of Kinetic Parameters 122
E. Leaf Nitrogen Content as a Driver of Photosynthetic Capacity 123
F. Interspecific Variation in Leaf Traits 124
VIII. Future Perspective 124
Acknowledgements 125
References 125
Chapter 4: Within-Canopy Variations in Functional Leaf Traits: Structural, Chemical and Ecological Controls and Diversity of R... 133
I. Introduction 135
II. Evaluation of the Role of Different Leaf Functional Traits Involved in Variation of Photosynthesis Through Plant Canopies 137
A. Determinants of Foliage Biochemical Potentials 138
B. Traits Affecting Light Harvesting and Initial Quantum Yield 139
III. Light-Dependent Variations in Photosynthesis and Underlying Traits Across Plant Canopies 140
A. A Meta-Analysis of Within-Canopy Variations in the Mediterranean Evergreen Quercus ilex 141
1. Data and Methods 141
2. Variations in key Functional Traits 141
B. Leaf Age-Dependent Variations in Foliage Plasticity in Evergreens 143
1. Why Should Plasticity Depend on Leaf Age? 143
2. Analyzing Plasticity Changes 144
3. Experimental Evidence of Plasticity Modifications 144
C. Qualitative Differences among Trait Relationships between Plant Functional Types 145
1. Species with Low to Moderately High Leaf Turnover 145
2. Species with High Leaf Turnover 147
D. Variations in Photosynthetic Plasticity Among Plant Functional Types 148
E. Importance of Within-Canopy Biochemical Modifications in Whole Canopy Photosynthesis 149
IV. Variations in Traits Improving Light Harvesting and Protecting from Excess Light 151
A. Structural Traits as Determinants of Light Harvesting and Avoidance 151
B. Chemical Traits Improving Abiotic Stress Tolerance 153
C. Dynamics in Protective Traits After Rapid Changes in Light Availability 155
V. Photosynthetic Acclimation in Relation to Species Shade Tolerance 158
A. Evidence from the Case Studies 158
B. Generalizing the Patterns 160
VI. Conclusions 161
Acknowledgements 162
References 162
Chapter 5: Regulation of Leaf Traits in Canopy Gradients 174
I. Introduction 175
II. Environmental Gradients 176
III. Leaf Age or the Light Gradient 178
IV. Perception of and Response to Canopy Density 181
A. The Light Gradient Spectrally Neutral Shading or Low R:FR Effects
B. The Temperature Gradient 183
C. Photoreceptors 183
D. Redox and ROS Signaling 184
E. Assimilate Supply 185
F. Cytokinins and Resource Reallocation 186
G. Systemic Signaling Involved in Leaf Growth and Structure 188
V. Comparison Between Functional Groups 190
VI. Concluding Remarks 192
Acknowledgments 194
References 194
Part III: Whole-Plant Processes in Leaf Canopies 200
Chapter 6: Photomorphogenesis and Photoreceptors 201
I. Competition for Light: Shade Tolerance and Shade Avoidance 202
II. Perception of Neighbour-Derived Signals 203
A. Low R:FR Perception and Signal Transduction 204
B. Blue Light Perception and Signalling 205
C. Other Light Signals: Low PAR and Enriched Green Light 207
D. Light-Independent Signals 207
III. Hormonal Regulation of Shade Avoidance 208
A. Gibberellin 208
B. Auxin and BR 209
C. Hormone Physiological Control of Shoot Branching 209
IV. Future Perspective 210
References 210
Chapter 7: Forest Canopy Hydraulics 217
I. Introduction 218
A. Components of the Hydraulic Transport System 219
B. Constraints on Hydraulic Transport 220
C. Hydraulic Vulnerability 222
II. Safety and Efficiency of Hydraulic Architecture 222
A. Embolism Formation and Avoidance 223
B. Functional Implications of the Loss and Recovery of Hydraulic Function 227
C. Linking Stomatal Control of Leaf Water Potential to Xylem Functioning 229
III. Dynamic Responses of Tree Hydraulic Architecture 230
A. Embolism Formation and Reversal 231
B. Ionic Response 231
C. Capacitance 232
D. Hydraulic Redistribution 233
IV. Environmental Plasticity 234
A. Aridity 234
B. Freezing 235
C. Soil Texture 235
D. Nutrient Availability 235
V. Scaling from Leaf to Canopy 236
A. Dynamic Scaling Relationships 237
B. Impacts of Tree Size 237
C. Tree to Stand Scaling 238
D. Simple Biophysical and Architectural Proxies for Scaling 238
VI. Conclusions 238
Acknowledgements 239
References 239
Chapter 8: Simulating Crop Growth and Development Using Functional-Structural Plant Modeling 248
I. Introduction 249
II. Functional-Structural Plant Modelling 250
III. Calibration of an Architectural Model 252
A. Architectural Data 252
B. The Calibration Process 255
IV. Simulation of Light 256
V. Simulation of Photosynthesis and Carbon Allocation at the Organ Level 259
VI. Simulation of Photomorphogenesis 260
VII. Conclusions 262
References 262
Part IV: Assessments of Vegetation Functioning 266
Chapter 9: Modeling Canopy Photosynthesis 267
I. Introduction 268
II. Advances in Canopy Photosynthesis Models 269
III. Models of One-Dimensional Canopy Photosynthesis 270
A. Multi-layer Model 270
B. Big-Leaf Model 270
Box 9.1 Derivation of Big-Leaf Model 271
C. Sun-Shade Model 272
D. Comparison of Calculated Rates Between Canopy Photosynthesis Models 272
1. Multi-layer Model Under Direct-Diffuse Light (MDDM) 272
Box 9.2 Equations Used in the Models 273
2. Multi-layer Model With Simple Light Extinction (MSM) 277
3. Big-Leaf Model 1 (BLM1) 277
4. Big-Leaf Model 2 (BLM2) 277
5. Sun-Shade Big-Leaf Model (SSM) 278
IV. Effect of Canopy Traits on Canopy Photosynthesis 279
V. Canopy Photosynthesis Models with Heat Exchange 282
VI. Validation 284
A. Plant Growth and Model Prediction 284
B. Eddy Covariance and Model Prediction 285
VII. Application of Canopy Photosynthesis Models to Larger Scales 288
VIII. Conclusion 292
Acknowledgments 292
References 292
Chapter 10: Observation and Modeling of Net Ecosystem Carbon Exchange Over Canopy 297
I. Introduction 298
II. Theory of Measurement 299
A. Atmospheric Boundary Layer 299
B. Eddy Flux 300
C. Above-Canopy Flux, Storage Flux, and Net Ecosystem Exchange 302
III. Modeling 303
A. Soil-Vegetation-Atmosphere Transfer (SVAT) Model 303
1. Radiative Transfer and Energy Balance at Both Leaf and Soil-Surface Levels 304
2. Leaf-Level Physiological Functions 305
3. Scalar Transport 306
B. Model Applications 307
IV. Future Research Directions 312
Acknowledgments 313
References 313
Chapter 11: Remote Sensing of Vegetation: Potentials, Limitations, Developments and Applications 316
I. Introduction 318
A. What Is Earth Observation? 318
B. What Earth Observation Can and Can´t Measure 318
II. Radiative Transfer in Vegetation: The Problem and Some Solutions 323
A. Statement of the Radiative Transfer Problem 323
B. Solving the Radiative Transfer Problem for Explicit Canopy Structure 325
C. Radiation Transfer Within the Leaf 331
D. Recollision Probability and Spectral Invariance 333
E. 3D Monte Carlo Approaches 335
III. Effective Parameters 338
A. Basics: Definition of Effective Characteristics 338
B. Data Assimilation 338
C. Scale Differences and Model Intercomparisons 339
IV. New Observations of Structure and Function 341
A. Structural Information from Lidar and RADAR 341
1. Discrete-Return Lidar Systems 342
2. Full-Waveform Lidar Systems 342
3. Limitations and Future Developments of Lidar Systems 342
4. Terrestrial Laser Scanning (TLS) 344
5. RADAR Systems 347
B. Fluorescence and Canopy Function 347
V. Conclusions 350
Acknowledgments 350
References 351
Chapter 12: Biometric-Based Estimations of Net Primary Production (NPP) in Forest Ecosystems 359
I. Introduction 361
II. Production Processes at Ecosystem Scales 362
III. Inventory-Based Forest Net Primary Productivity (NPP) Estimates 362
A. Summation Method 362
B. Biometric Estimates of NEP and NPP Beneath a Flux Tower 365
IV. Field NPP Measurements 366
A. Increments of Organic Matter 366
1. Aboveground Biomass 366
2. Belowground Biomass 369
B. Loss of Organic Matter 369
1. Aboveground Losses 369
2. Fine Root Dynamics 371
3. Other Losses 372
V. Comparisons of NPP Estimates in the Takayama Experimental Forest 373
VI. Conclusions 374
Acknowledgements 375
References 375
Part V: Application to Ecological and Evolutionary Processes 378
Chapter 13: Optimization and Game Theory in Canopy Models 379
I. Introduction 380
II. Static-plant Simple Optimization 381
A. Optimal Leaf Nitrogen Distribution 382
B. Optimal Leaf Area Index 383
C. Differences Between Predicted and Actual Values 384
III. Application of Evolutionary Game Theory in Canopy Models 385
A. The Competitive Optimum and the Definition of an Evolutionary Stable Strategy 385
1. Continuous Single Traits 385
2. Pay off Matrices of Discreet Strategies 386
B. Evolutionary Game Theory in Canopy Studies 387
1. Plant Height 387
2. Leaf Angle 388
3. Leaf Area 389
C. Plant Growth Forms and the Degree of Interplant Interactions 391
IV. Dynamic Plant Simple Optimization Models 393
A. Dynamic Models of Leaf Area Growth and Nitrogen Dynamics 393
B. Functional Structural Models 394
V. Dynamic Game Theoretical Models 394
VI. Choice of Fitness Proxy 396
VII. Conclusions 397
Acknowledgments 398
References 398
Chapter 14: The Use of Canopy Models to Analyze Light Competition Among Plants 402
I. Introduction 403
II. Modeling Light Acquisition and Photosynthesis 404
A. Layered Models 405
1. Light Partitioning 405
2. Linking Light Absorption to Photosynthesis 408
B. Continuous Models 408
III. Applications in Fundamental Ecology: The Case of Asymmetry in Competition 409
A. Light Acquisition Relative to Plant Mass 411
B. Growth and Radiation-Use Efficiency 414
IV. Applications in Crop Science: The Case of Crop-Weed Interaction 416
V. Concluding Remarks 418
Acknowledgements 418
References 418
Chapter 15: Axiomatic Plant Ecology: Reflections Toward a Unified Theory for Plant Productivity 422
I. Introduction 424
II. Productivity Relationships in Populations and Communities 424
A. Monsi-Saeki Model 424
B. Logistic Growth of Plant Mass 426
C. Size Inequality Among Plants 428
D. One Sided Competition 431
E. Position of Y-N Curve 431
F. Dry Matter Density 432
G. Tracking Stand Development in Yield-Density (Y-N) Space 432
H. Growth and Death of Plants 433
I. The Dynamics of Tree Death-Self-Thinning 433
J. Stand Compactness 435
K. Summary: Roots of Current Theory for Canopy-Level Productivity 435
III. Toward a Unified Theory of Plant Productivity 435
A. Building on the Foundation Initiated by Monsi-Saeki (1953) 435
B. Reorienting the Focal Scale for a Theory of Productivity: Leaves 437
C. Reorienting the Framework in a Theory of Productivity: Leaf Longevity 437
D. Canopy Ergodic Hypothesis 439
E. Reorienting the Framework in a Theory of Productivity: Plant Size 441
F. Toward a Unified Theory for Plant Productivity 442
Acknowledgements 444
References 444
Subject Index 447
Author Index 34
| Erscheint lt. Verlag | 17.12.2015 |
|---|---|
| Reihe/Serie | Advances in Photosynthesis and Respiration | Advances in Photosynthesis and Respiration |
| Zusatzinfo | XXXIII, 428 p. 125 illus., 56 illus. in color. |
| Verlagsort | Dordrecht |
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Biologie ► Botanik |
| Technik | |
| Schlagworte | Canopy function • Canopy photosynthesis • ecosystem function • global change • plant ecophysiology |
| ISBN-10 | 94-017-7291-6 / 9401772916 |
| ISBN-13 | 978-94-017-7291-4 / 9789401772914 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Größe: 13,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich