Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Robotized Transcranial Magnetic Stimulation - Lars Richter

Robotized Transcranial Magnetic Stimulation (eBook)

(Autor)

eBook Download: PDF
2014 | 2013
XII, 183 Seiten
Springer New York (Verlag)
978-1-4614-7360-2 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Robotized Transcranial Magnetic Stimulation describes the methods needed to develop a robotic system that is clinically applicable for the application of transcranial magnetic stimulation (TMS). Chapter 1 introduces the basic principles of TMS and discusses current developments towards robotized TMS. Part I (Chapters 2 and 3) systematically analyzes and clinically evaluates robotized TMS. More specifically, it presents the impact of head motion on the induced electric field. In Part II (Chapters 3 to 8), a new method for a robust robot/camera calibration, a sophisticated force-torque control with hand-assisted positioning, a novel FTA-sensor for system safety, and techniques for direct head tracking, are described and evaluated. Part III discusses these developments in the context of safety and clinical applicability of robotized TMS and presents future prospects of robotized TMS. Robotized Transcranial Magnetic Stimulation is intended for researchers as a guide for developing effective robotized TMS solutions. Professionals and practitioners may also find the book valuable.
Robotized Transcranial Magnetic Stimulation describes the methods needed to develop a robotic system that is clinically applicable for the application of transcranial magnetic stimulation (TMS). Chapter 1 introduces the basic principles of TMS and discusses current developments towards robotized TMS. Part I (Chapters 2 and 3) systematically analyzes and clinically evaluates robotized TMS. More specifically, it presents the impact of head motion on the induced electric field. In Part II (Chapters 3 to 8), a new method for a robust robot/camera calibration, a sophisticated force-torque control with hand-assisted positioning, a novel FTA-sensor for system safety, and techniques for direct head tracking, are described and evaluated. Part III discusses these developments in the context of safety and clinical applicability of robotized TMS and presents future prospects of robotized TMS. Robotized Transcranial Magnetic Stimulation is intended for researchers as a guide for developing effective robotized TMS solutions. Professionals and practitioners may also find the book valuable.

Acknowledgments 5
Contents 6
Symbols 10
1 Introduction 12
1.1…Transcranial Magnetic Stimulation 12
1.1.1 Principle of TMS 12
1.1.2 Applications of TMS: Single-Pulse Versus Repetitive Stimulation 14
1.1.3 TMS Coils 15
1.1.4 Motor Evoked Potentials and Motor Threshold 17
1.1.4.1 Rossini Criterion 17
1.1.4.2 Two-Threshold Method 18
1.1.4.3 Threshold Hunting 18
1.1.4.4 Brief Comparison 18
1.2…State-of-the-Art: Neuro-Navigated TMS 19
1.2.1 Head Registration and Tracking 20
1.2.2 Coil Tracking 21
1.3…Robotized TMS: Combining Neuro-Navigation with Automation 22
1.3.1 Specialized Setup 22
1.3.2 Industrial Robot Design 24
1.3.2.1 Current Setup of the Robotized TMS System 24
1.3.2.2 Typical Procedure of Robotized TMS 25
1.3.2.3 Motion Compensation 27
1.4…Purpose of this Work 27
1.4.1 Structure of this Work 29
References 30
Part ISystematic Analysis and Evaluation of Robotized TMS in Practice 36
2 The Importance of Robotized TMS: Stability of Induced Electric Fields 37
2.1…Principle of End-to-End Accuracy 38
2.2…Realization and Data Acquisition 40
2.2.1 Head Motion Measurements 40
2.2.2 Electric Field Measurements 41
2.2.3 Typical TMS Scenarios 43
2.2.4 Error Calculation 44
2.2.5 Statistical Analysis 44
2.3…Impact of Head Motion on TMS 44
2.3.1 Head Motion 44
2.3.2 End-to-End Accuracy 46
2.4…Consequences 50
2.5…Derived Requirements for Robotized TMS 51
References 52
3 Evaluation of Robotized TMS: The Current System in Practice 54
3.1…Optimal Coil Orientation for TMS of the Lower Limb 54
3.1.1 Experimental Realization 55
3.1.1.1 Setup 55
3.1.1.2 Transcranial Magnetic Stimulation 56
3.1.1.3 Further Analysis 57
3.1.2 Stimulation Outcomes 58
3.1.3 Relevance for TMS 61
3.2…Coil-to-Scalp/Cortex Distance 62
3.2.1 TMS Recordings 63
3.2.2 Measured Motor Thresholds and Distances 63
3.2.3 Robotized TMS for Accurate Coil Positioning 64
3.3…Practical Evaluation of Robotized TMS 64
References 66
Part IISafe and Clinically Applicable Robotized TMS 69
4 Robust Real-Time Robot/Camera Calibration 70
4.1…Hand--Eye Calibration 72
4.2…Online Calibration 74
4.2.1 Basic Idea of Online Calibration 75
4.2.2 Marker Calibration 75
4.2.3 Robust Real-Time Calibration 76
4.2.4 Translational Error Estimation for Marker Calibration 78
4.2.5 Error Calculation for Online Calibration 80
4.2.6 Data Acquisition for Evaluation 80
4.2.6.1 Data Acquisition for Evaluation of Marker Calibration 81
4.2.6.2 Data Acquisition for Evaluation of Online Calibration 81
World Calibration Setup: 82
Variance in Robot Workspace: 82
Robotized TMS Application---Overall System Error: 82
4.3…Evaluation of Online Calibration 84
4.3.1 Accuracy of Marker Calibration 84
4.3.2 Accuracy of Online Calibration 85
4.3.2.1 Accuracy in a World Calibration Setup 85
4.3.2.2 Variance in the Robot Workspace 85
4.3.2.3 Accuracy of Coil Positioning---Overall System Error 87
4.4…Benefits for Robotized TMS 87
References 90
5 FT-Control 92
5.1…Basic Principles 93
5.1.1 Sensor Calibration 94
5.1.2 Gravity Compensation and Tool Calibration 96
5.1.3 Influence of the Coil’s Supply Cable 97
5.2…Implementation of FT-Control 97
5.2.1 Setup 98
5.2.2 Hand-Assisted Positioning 98
5.2.3 Contact Pressure Control 100
5.2.3.1 Optimal Coil Placement 100
5.2.3.2 Response to Head Motion 102
5.2.4 Data Acquisition for Evaluation of FT-Control 102
5.2.4.1 Coil Calibration and Gravity Compensation 102
5.2.4.2 Usability of Hand-Assisted Positioning 103
5.2.4.3 Latency of Contact Pressure Control 104
5.3…Results of FT-Control 105
5.3.1 Coil Calibration and Gravity Compensation 105
5.3.2 Hand-Assisted Positioning 106
5.3.3 Latency of Contact Pressure Control 107
5.4…FT-Control in the Context of Robotized TMS 107
References 108
6 FTA-Sensor: Combination of Force/Torque and Acceleration 109
6.1…The FTA Sensor 110
6.1.1 Combining Acceleration with Force--Torque 110
6.1.2 Embedded System for Real-Time Monitoring 111
6.1.3 Hardware Design: Circuit Board and Casing 112
6.1.4 Calibration of IMU to FT Sensor 114
6.1.5 Data Acquisition for Evaluation of the FTA Sensor 116
6.1.5.1 Calibration 117
Quality of the fit: 117
Calibration error: 117
Stability of calibration: 117
6.1.5.2 Gravity Compensation 118
6.1.5.3 Latency 118
6.1.5.4 Realistic Worst-Case Estimate 119
6.2…Performance of the FTA Sensor 120
6.2.1 Calibration 120
6.2.1.1 Quality of the Fit 120
6.2.1.2 Calibration Error 120
6.2.1.3 Stability of the Calibration 122
6.2.2 Gravity Compensation 122
6.2.3 Latency 124
6.2.4 Realistic Worst-Case Estimate 124
6.3…FTA Sensor for Safe Robotized TMS 125
References 126
7 Optimized FT-Control with FTA Sensor 127
7.1…Advanced Hand-Assisted Positioning 127
7.2…Integration into the Robot Server 130
7.3…TMS Coil Calibration 132
7.4…Data Acquisition for Realistic Evaluation of Optimized FT-Control 132
7.4.1 Coil Calibration and Gravity Compensation 133
7.4.2 Precision of Optimized Hand-Assisted Positioning 133
7.5…Performance of the FTA Sensor in Operation 135
7.5.1 Coil Calibration and Gravity Compensation 135
7.5.2 Precision of Optimized Hand-Assisted Positioning 136
7.6…Optimized FT-Control for Clinical Acceptance 137
References 138
8 Direct Head Tracking 139
8.1…Direct Versus Indirect Tracking 139
8.2…FaceAPI 140
8.2.1 The FaceAPI’s Main Principle 140
8.2.2 Evaluation of the FaceAPI for Direct Head Tracking 141
8.2.3 Accuracy of the FaceAPI 141
8.3…3D Laser Scans 141
8.3.1 Implementation of Direct Head Tracking with Laser Scans 142
8.3.1.1 Calibration of 3D Laser Scanner to Robot 142
8.3.1.2 Coil Registration 143
8.3.1.3 Registration of Head-Scan to 3D Laser Scanner and Head Tracking 146
8.3.2 Data Acquisition for an Experimental Validation 147
8.3.2.1 Calibration 147
8.3.2.2 Head Registration for Head Tracking 148
8.3.2.3 Head Tracking Based on 3D Laser Scans 148
8.3.2.4 Coil Calibration 148
8.3.3 First Results 148
8.3.3.1 Calibration 148
8.3.3.2 Head Registration for Head Tracking 150
8.3.3.3 Head Tracking Based on 3D Laser Scans 150
8.3.3.4 Coil Registration 151
8.4…Head Contour Generation Based on Laser Scans 153
8.4.1 Head Scanning and Contour Generation 153
8.4.2 Comparison to Manual Contour Generation 154
8.4.3 Application in Robotized TMS Studies 154
8.5…Capability of Direct Tracking for Robotized TMS 156
References 156
Part IIIDiscussion and Closing Remarks 158
9 Discussion 159
9.1…Robust Real-Time Robot/World Calibration 160
9.2…Hand-Assisted Positioning 161
9.3…Contact Pressure Control 163
9.4…FTA Sensor 163
9.5…Direct Head Tracking 166
9.5.1 FaceAPI 166
9.5.2 3D Laser Scans 167
References 168
10 Closing Remarks 170
10.1…Conclusions 170
10.2…Outlook and Future Work 171
10.2.1 Fully Automated TMS 171
10.2.2 Mapping of the Spinal Roots 172
10.2.3 Direct Head Tracking 173
10.2.3.1 3D Depth Sensor 173
10.2.3.2 Customized Head Tracking with Webcams 174
10.2.4 Double-Coil Robotized TMS 175
10.2.5 Robotized Interleaved TMS/fMRI 175
References 178
Glossary 180
Companies 184
Curriculum Vitae 186

Erscheint lt. Verlag 8.7.2014
Zusatzinfo XII, 183 p.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Medizinische Fachgebiete Neurologie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
Technik Maschinenbau
Schlagworte head tracking • Human-Robot Interaction • Medical Robotics • Robot calibration • Transcranial magnetic stimulation
ISBN-10 1-4614-7360-8 / 1461473608
ISBN-13 978-1-4614-7360-2 / 9781461473602
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Fachmedien Wiesbaden (Verlag)
CHF 29,30
Mit Herz, Kopf & Bot zu deinem Skillset der Zukunft

von Jenny Köppe; Michel Braun

eBook Download (2025)
Lehmanns Media (Verlag)
CHF 16,60