Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Molten Salts Chemistry and Technology (eBook)

eBook Download: EPUB
2014
John Wiley & Sons (Verlag)
9781118448823 (ISBN)

Lese- und Medienproben

Molten Salts Chemistry and Technology - Marcelle Gaune-Escard, Geir Martin Haarberg
Systemvoraussetzungen
197,99 inkl. MwSt
(CHF 189,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Both high temperature molten salts and room temperature ionic liquids (collectively termed liquid salts) have unique properties, including good heat capacity, good electrical conductivity and, in some cases, chemical catalytic properties. They are critical for the efficient production and processing of many different materials, for example the electrolytic extraction and refining of aluminium and silicon, particularly important in the post fossil fuel era. Other industrial applications range from solvents and fuel cells to alloy heat treatments and pyroprocessing in nuclear fuel. 

With a focus on sustainable processes for the production and processing of materials, this book contains over 60 chapters and is organized into seven areas: 

  • Aluminium Electrolysis
  • New Processes for Electrowinning
  • Modeling and Thermodynamics
  • High Temperature Experimental Techniques
  • Electrochemistry in Ionic Liquids
  • Nuclear Energy
  • Energy Technology

Intended to provide a solid understanding of the properties, experimental methods, theoretical methods and applications of these materials, Molten Salts: Chemistry and Technology is an unrivalled reference for chemists, engineers and materials scientists in academia, research and industry.


Written to record and report on recent research progresses in the field of molten salts, Molten Salts Chemistry and Technology focuses on molten salts and ionic liquids for sustainable supply and application of materials. Including coverage of molten salt reactors, electrodeposition, aluminium electrolysis, electrochemistry, and electrowinning, the text provides researchers and postgraduate students with applications include energy conversion (solar cells and fuel cells), heat storage, green solvents, metallurgy, nuclear industry, pharmaceutics and biotechnology.

Marcelle Gaune-Escard is Research Director at Ecole Polytechnique, CNRS, Marseille, France. Most of her scientific activities focus on the multi-technique physicochemical, structural characterization and modeling of lanthanide halides melts. She has contributed over 250 journal papers, and over 300 conference presentations, and been involved in Chairing and organising numerous International Molten Salt Conferences. She is well-known for editing and publishing her own newsletter, Molten Salts & Ionic Liquids (since 1976, distribution 600, 24 countries, quarterly; Web edition since 1996). In 2004 Marcelle was awarded the Max Bredig Award in Molten Salt Chemistry, granted by the Electrochemical Society (USA) for the first time to a French female scientist. Geir Martin Haarberg is a Professor at the Materials Science and Engineering department at Norwegian University of Science and Technology, Trondheim, Norway since 2000. He has authored around 150 publications, including articles published in international journals, and conference proceedings (71).

List of Contributors


  1. A.V. Abramov, Department of Rare Metals and Nanomaterials, Ural Federal University, Russia
  2. H. Akatsuka, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Japan
  3. N. Akiyama, Central Research Institute of Electric Power Industry, Japan
  4. D. E. Aleksandrov, Department of Rare Metals and Nanomaterials, Ural Federal University, Russia
  5. I. M. Astrelin, Faculty of Chemistry and Technology, Kyiv Polytechnical Institute, National Technical University, Ukraine
  6. O.B. Babushkina, Centre of Electrochemical Surface Technology, Austria
  7. T. Bauer, Institute of Technical Thermodynamics, German Aerospace Center—DLR, Germany
  8. M. Berkani, Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Béjaïa, Targa ouzemmour, Algérie
  9. C. Bessada, CNRS, CEMHTI UPR 3079, Univ. Orléans, F-45071 Orléans, France
  10. A.-L. Bieber, Laboratoire de Génie Chimique, CNRS UMR 5503, Université de Toulouse, France
  11. M. Boča, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Slovakia; and Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Slovakia
  12. N. P. Brevnova, Department of Rare Metals and Nanomaterials, Ural Federal University, Russia
  13. A. Bund, Fachgebiet Elektrochemie und Galvanotechnik, Technische Universitaet Ilmenau, Germany
  14. M. F. Butman, Ivanovo State University of Chemistry and Technology, Russia
  15. L. Cassayre, Laboratoire de Génie Chimique, CNRS UMR 5503, Université de Toulouse, France
  16. P. Chamelot, Laboratoire de Génie Chimique, CNRS UMR 5503, Université de Toulouse, France
  17. M. V. Chernyshov, Department of Rare Metals and Nanomaterials, Ural Federal University, Russia
  18. A. V. Chukin, Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Russia
  19. O. Conocar, CEA Marcoule, Nuclear Energy Division, Radiochemistry and Process Department, Laboratoires d'Elaboration des Procédés de Séparation, France
  20. B. Davis, Kingston Process Metallurgy, Inc., Canada
  21. S. Deki, Fuel Cell Nanomaterials Center, University of Yamanashi, Japan
  22. R. F. Descallar-Arriesgado, Faculty of Engineering, Hokkaido University, Japan
  23. V.S. Dolmatov, Kola Science Center RAS, Institute of Chemistry, Russia
  24. N. Douyère, CEA Marcoule, Nuclear Energy Division, Radiochemistry and Process Department, Laboratoires d'Elaboration des Procédés de Séparation, France
  25. P. Fellner, Slovak University of Technology in Bratislava, Slovakia
  26. D. Fray, Department of Materials Science and Metallurgy, University of Cambridge, UK
  27. T. Fujii, Research Reactor Institute, Kyoto University, Japan
  28. T. Fujimori, Graduate School of Energy Science, Kyoto University, Japan
  29. R. Fujita, Power Systems Company, Toshiba Corporation, Japan
  30. K. Fukasawa, Graduate School of Engineering, Kyoto University, Japan
  31. A. Fukunaga, Graduate School of Energy Science, Kyoto University, Japan; and Sumitomo Electric Industries, Ltd., Japan
  32. T. Fukunaga, Research Reactor Institute, Kyoto University, Japan
  33. M. Fukushima, Japan Atomic Energy Agency, Japan
  34. T. Furuta, Permerec Electrode Ltd., Japan
  35. A. Gab, Faculty of Chemistry and Technology, Kyiv Polytechnical Institute, National Technical University, Ukraine
  36. I. Galasiu, Romanian Academy—Institute of Physical Chemistry “Ilie Murgulescu”, Romania
  37. R. Galasiu, Romanian Academy—Institute of Physical Chemistry “Ilie Murgulescu”, Romania
  38. B. Gao, School of Materials and Metallurgy, Northeastern University, China
  39. M. Gaune-Escard, Aix-Marseille Université, CNRS IUSTI UMR 7343, Technopole de Château-Gombert, France
  40. M. Gembický, Department of Chemistry, State University of New York, USA
  41. M. Gibilaro, Laboratoire de Génie Chimique, CNRS UMR 5503, Université de Toulouse, France
  42. M. Gobet, CNRS, CEMHTI UPR 3079, Univ. Orléans, F-45071 Orléans, France
  43. A. Gray-Weale, School of Chemistry, University of Melbourne, Australia
  44. T. R. Griffiths, Redston Trevor Consulting Ltd., UK
  45. J. G. Gussone, German Aerospace Center (DLR), Institute of Materials Research, Germany
  46. G. M. Haarberg, Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Norway
  47. R. Hagiwara, Graduate School of Energy Science, Kyoto University, Japan
  48. J. M. Hausmann, German Aerospace Center (DLR), Institute of Materials Research, Germany
  49. J. Híveš, Slovak University of Technology in Bratislava, Slovakia
  50. M. Hoshi, Department of Metallurgy, Graduate School of Engineering, Tohoku University, Japan
  51. J. Hryn, Argonne National Laboratory, USA
  52. X. Hu, School of Materials and Metallurgy, Northeastern University, China
  53. Y. Iida, Department of Applied Chemistry, Doshisha University, Japan
  54. K. Ikeda, Department of Applied Chemistry, Graduate School of Engineering, Doshisha University, Japan
  55. M. Inaba, Department of Applied Chemistry, Graduate School of Engineering, Doshisha University, Japan; and Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Japan
  56. S. Inazawa, Sumitomo Electric Industries, Ltd., Japan
  57. T. Ishibashi, Graduate School of Energy Science, Kyoto University, Japan
  58. Y. Ishigaki, Medical Research Institute, Kanazawa Medical University, Japan
  59. A. Ispas, Fachgebiet Elektrochemie und Galvanotechnik, Technische Universitaet Ilmenau, Germany
  60. Y. Ito, Energy Conversion Research Center, Doshisha University, Japan
  61. K. Itoh, Graduate School of Education, Okayama University, Japan
  62. A. B. Ivanov, Department of Rare Metals and Nanomaterials, Ural Federal University, Russia
  63. S. Ivanov, Fachgebiet Elektrochemie und Galvanotechnik, Technische Universitaet Ilmenau, Germany
  64. Y. Iwadate, Graduate School of Engineering, Chiba University, Japan
  65. A. Jacob, Centre for Innovation Competence Virtuhcon, Group “Multiphase Systems”, TU Bergakademie Freiberg, Germany; and Forschungszentrum Jülich, Germany
  66. K. Jomová, Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Slovakia
  67. A. Kajinami, Graduate School of Engineering, Kobe University, Japan
  68. R. V. Kamalov, Department of Rare Metals and Nanomaterials, Ural Federal University, Russia
  69. M. Keppert, Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University, Czech Republic
  70. T. Kikuchi, Faculty of Engineering, Hokkaido University, Japan
  71. K. Kinoshita, Central Research Institute of Electric Power Industry, Japan
  72. S. Kishida, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan
  73. S. Kitawaki, Japan Atomic Energy Agency, Japan
  74. H. Kofuji, Japan Atomic Energy Agency, Japan
  75. T. Koketsu, Graduate School of Energy Science, Kyoto University, Japan
  76. T. Koyama, Central Research Institute of Electric Power Industry, Japan
  77. O. V. Kremenetskaya, Max Planck Institute for Chemical Physics of Solids, Germany
  78. V. G. Kremenetsky, Kola Science Center RAS, Institute of Chemistry, Russia
  79. B. Kubíková, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Slovakia
  80. L. S. Kudin, Ivanovo State University of Chemistry and Technology, Russia
  81. M. Kurata, Central Research Institute of Electric Power Industry, Japan
  82. S. Kuwabata, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan; and CREST, Japan Science and Technology Agency, Japan
  83. S. A. Kuznetsov, Kola Science Center RAS, Institute of Chemistry, Russia
  84. J. Lacquement, CEA Marcoule, Nuclear Energy Division, Radiochemistry and Process Department, Laboratoires d'Elaboration des Procédés de Séparation, France
  85. V. Laging, Department of Materials Science and Engineering, Delft University of Technology, Den Haag, The Netherlands
  86. D. Laing, Institute of Technical Thermodynamics, German Aerospace Center—DLR, Germany
  87. A. Laplace, CEA Marcoule, Nuclear Energy Division, Radiochemistry and Process Department, Laboratoires d'Elaboration des Procédés de Séparation, France
  88. M. Li, Department of Metallurgy, Graduate School of Engineering, Tohoku University, Japan
  89. F. Lisý, Department of Fluorine Chemistry, Nuclear Research Institute Řež, plc, Czech Republic
  90. E.O. Lomako, Centre of Electrochemical Surface Technology,...

Erscheint lt. Verlag 12.5.2014
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik
Schlagworte Aluminium Electrolysis • Chemie • Chemistry • Electrochemistry • Electrochemistry in Ionic Liquids • Electrodeposition • Electrowinning • energy technology • High Temperature Experimental Techniques • Industrial Chemistry • Marcelle Gaune-Escard • materials processing • Materials Science • Materialverarbeitung • Materialwissenschaften • Modeling and Thermodynamics • molten salt reactors • Molten Salts Chemistry and Technology • Nachhaltige u. Grüne Chemie • Nachhaltige u. Grüne Chemie • New Processes for Electrowinning • nuclear energy • Salzschmelze • Sustainable Chemistry & Green Chemistry • Technische Chemie • Technische u. Industrielle Chemie
ISBN-13 9781118448823 / 9781118448823
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
CHF 82,95