Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 47a (eBook)

Alkenes
eBook Download: PDF
2014 | 1. Auflage
653 Seiten
Georg Thieme Verlag KG
9783131722713 (ISBN)

Lese- und Medienproben

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 47a -  David J. Ager,  Diego Alonso Velasco,  Daniel Bellus,  Marina Cherkinsky,  F. Foubelo Garcia,  Karol Grel
Systemvoraussetzungen
2.589,99 inkl. MwSt
(CHF 2529,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'> <HTML><HEAD> <META content='text/html; charset=unicode' http-equiv=Content-Type> <META name=GENERATOR content='MSHTML 8.00.7600.16588'></HEAD> <BODY> <P><EM>Science of Synthesis: Houben-Weyl Methods of Molecular Transformations</EM> is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.</P> <P><EM>Science of Synthesis</EM> is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.</P> <UL><LI>Contains the expertise of presently 400 leading chemists worldwide <LI>Critically evaluates the preparative applicability and significance of the synthetic methods <LI>Discusses relevant background information and provides detailed experimental procedures</LI></UL> <P>For full information on the <EM>Science of Synthesis</EM> series, visit the <A href='http://www.science-of-synthesis.com/'>Science of Synthesis Homepage</A></P></BODY></HTML>

Science of Synthesis – Volume 47a: Alkenes 1
Title page 3
Imprint 5
Preface 6
Volume Editor’s Preface 8
Overview 10
Table of Contents 12
Introduction 22
47.1 Product Class 1: Alkenes 30
47.1.1 Synthesis by Alkenation Reactions 30
47.1.1.1 Wittig and Related Phosphorus-Based Alkenations 30
47.1.1.1.1 Monosubstituted Alkenes 31
47.1.1.1.1.1 Method 1: Synthesis from Aldehydes and Methylenetriphenylphosphorane 31
47.1.1.1.1.1.1 Variation 1: Wittig Alkenation with Methylenetriphenylphosphorane Generated In Situ 33
47.1.1.1.1.1.2 Variation 2: Wittig Alkenation with Methylenetriphenylphosphorane and Aldehyde Generated In Situ 36
47.1.1.1.1.1.3 Variation 3: Wittig Alkenation under Phase-Transfer Conditions 38
47.1.1.1.1.1.4 Variation 4: Synthesis of 13C- and 2H-Labeled Terminal Alkenes from Labeled Methyltriphenylphosphonium Halides 39
47.1.1.1.1.2 Method 2: Synthesis from Formaldehyde and Alkylidenetriphenylphosphoranes 41
47.1.1.1.2 1,1-Disubstituted Alkenes 43
47.1.1.1.2.1 Method 1: Synthesis from Ketones and Methylenetriphenylphosphorane 43
47.1.1.1.2.2 Method 2: Synthesis from Formaldehyde and Alkylidenetriphenylphosphoranes 47
47.1.1.1.2.2.1 Variation 1: Wittig Alkenation with Preformed Ylides and Formaldehyde in Aqueous Solution 47
47.1.1.1.2.2.2 Variation 2: Wittig Alkenation with Paraformaldehyde and Ylides Formed In Situ 48
47.1.1.1.3 Z-1,2-Disubstituted Alkenes 48
47.1.1.1.3.1 Method 1: Wittig Alkenation of Preformed Stable Aldehydes 49
47.1.1.1.3.1.1 Variation 1: Reaction under Homogeneous Conditions 49
47.1.1.1.3.1.2 Variation 2: Reaction with Immobilized Ylides 51
47.1.1.1.3.1.3 Variation 3: Reaction under Phase-Transfer Conditions 53
47.1.1.1.3.2 Method 2: Wittig Alkenation of Aldehydes Prepared In Situ 54
47.1.1.1.3.2.1 Variation 1: Alkenation of Aldehydes Prepared In Situ by Oxidation of Alcohols 54
47.1.1.1.3.2.2 Variation 2: Alkenation of Aldehydes Prepared In Situ by Reduction 58
47.1.1.1.3.2.3 Variation 3: Alkenation of Aldehydes Prepared by Oxidation of Ylides or Alkenes 61
47.1.1.1.3.2.4 Variation 4: Alkenation of Masked Aldehydes 62
47.1.1.1.3.3 Method 3: Alkenation with (Triphenylphosphoranylidene)alkanoates and -alkoxides 64
47.1.1.1.3.3.1 Variation 1: Ylide Generation with an Excess of Base 64
47.1.1.1.3.3.2 Variation 2: Alkenation with In Situ Silylated Alkoxide Ylides 66
47.1.1.1.3.4 Method 4: Z-Selective Wittig--Horner Alkenation 67
47.1.1.1.4 E-1,2-Disubstituted Alkenes 70
47.1.1.1.4.1 Method 1: The Schlosser Modification of the Wittig Alkenation 70
47.1.1.1.4.2 Method 2: E-Selective Wittig--Horner Alkenation 71
47.1.1.1.4.3 Method 3: E-Selective Alkenation with Ylides Bearing Substitutents Other Than Triphenylphosphine 73
47.1.1.1.5 Tri- and Tetrasubstituted Alkenes 75
47.1.1.1.5.1 Method 1: Non-Stereocontrolled Wittig Alkenations 75
47.1.1.1.5.1.1 Variation 1: Synthesis with Symmetrical Phosphoranes or Ketones 75
47.1.1.1.5.1.2 Variation 2: Synthesis with (Cycloalkylidene)triphenylphosphoranes 77
47.1.1.1.5.1.3 Variation 3: Synthesis with Unsymmetrical Phosphorus Ylides and Unsymmetrical Ketones 79
47.1.1.1.5.2 Method 2: Stereocontrolled Alkenations 82
47.1.1.1.5.2.1 Variation 1: The SCOOPY Procedure 82
47.1.1.1.5.2.2 Variation 2: With Phosphole-Derived Ylides 83
47.1.1.1.5.2.3 Variation 3: Horner--Emmons and Wittig--Horner Alkenations with Phosphonates and Phosphine Oxides 85
47.1.1.1.5.2.4 Variation 4: Indirect Routes Based upon Stork--Zhao and Still--Gennari Modifications 89
47.1.1.1.6 Cycloalkenes 90
47.1.1.1.6.1 Method 1: Synthesis by Reaction of .-Carbonyl-Substituted Phosphonium Salts 90
47.1.1.1.6.2 Method 2: Synthesis by Reaction of Vinylphosphonium Salts and .-Carbonylated Enolates 91
47.1.1.1.6.3 Method 3: Synthesis by Partial Oxidation of Bis(alkylidenetriphenylphosphoranes) 92
47.1.1.1.6.4 Method 4: Synthesis by Reaction of Bis(alkylidenetriphenylphosphoranes) with Bisaldehydes 94
47.1.1.2 Peterson Alkenation 106
47.1.1.2.1 Alkenation by Addition of a-Silyl Carbanions to Carbonyl Compounds 106
47.1.1.2.1.1 Method 1: Generation of a-Silyl Carbanions by Direct Deprotonation of Silanes 108
47.1.1.2.1.2 Method 2: Generation of a-Silyl Carbanions from (Halomethyl)silanes 109
47.1.1.2.1.2.1 Variation 1: Halogen--Lithium Exchange 109
47.1.1.2.1.2.2 Variation 2: Formation of a Grignard Reagent 110
47.1.1.2.1.2.3 Variation 3: Formation of an Organocerium Compound 111
47.1.1.2.1.2.4 Variation 4: Formation of an Organosamarium Compound 113
47.1.1.2.1.3 Method 3: Generation of a-Silyl Carbanions by Transmetalation 113
47.1.1.2.1.3.1 Variation 1: Displacement of a Phenylsulfanyl Group with a Lithium Naphthalenide Species 113
47.1.1.2.1.3.2 Variation 2: Displacement of an Organoselanyl Group 115
47.1.1.2.1.3.3 Variation 3: Displacement of a Trialkylstannyl Group 115
47.1.1.2.1.3.4 Variation 4: Displacement of a Trialkylsilyl Group 116
47.1.1.2.1.4 Method 4: Generation of a-Silyl Carbanions by Addition of Alkyllithium Species to Vinylsilanes 116
47.1.1.2.2 Alkenation by Reduction of a-Silyl Carbonyl Compounds 117
47.1.1.2.2.1 Method 1: Addition of Metal Hydride Reagents 117
47.1.1.2.2.2 Method 2: Addition of Organometallic Reagents 118
47.1.1.2.2.2.1 Variation 1: Addition to a-Silyl Aldehydes 119
47.1.1.2.2.2.2 Variation 2: Addition to a-Silyl Ketones 119
47.1.1.2.2.2.3 Variation 3: Addition to a-Silyl Esters 121
47.1.1.2.3 Alkenation Based on Epoxide Ring Opening 121
47.1.1.2.3.1 Method 1: Addition of Silylmetal Species to Epoxides 121
47.1.1.2.3.2 Method 2: Addition to Silylated Epoxides 122
47.1.1.3 Julia, Julia--Kocienski, and Related Sulfur-Based Alkenations 126
47.1.1.3.1 Julia Alkenation 126
47.1.1.3.1.1 Coupling Reaction 127
47.1.1.3.1.1.1 Method 1: Reaction of a-Sulfonyl Anions with Aldehydes and Ketones 128
47.1.1.3.1.1.1.1 Variation 1: Route toward Terminal Alkenes 128
47.1.1.3.1.1.1.2 Variation 2: Route toward 1,2-Disubstituted Alkenes 130
47.1.1.3.1.1.1.3 Variation 3: Route toward Trisubstituted Alkenes 134
47.1.1.3.1.1.1.4 Variation 4: Route toward Tetrasubstituted Alkenes 135
47.1.1.3.1.1.1.5 Variation 5: Special Cases 136
47.1.1.3.1.1.2 Method 2: Reaction of a-Sulfonyl Anions with Esters 141
47.1.1.3.1.1.3 Method 3: Reaction of a-Sulfonyl Anions with a-Haloorganometal Electrophiles 142
47.1.1.3.1.1.4 Method 4: Reaction of a-Sulfoxide Anions with Aldehydes and Ketones 144
47.1.1.3.1.1.5 Method 5: Reaction of Bis-sulfones with Aldehydes and Ketones 145
47.1.1.3.1.1.6 Method 6: Reaction of Sulfoximides with Aldehydes and Ketones 146
47.1.1.3.1.2 Reductive Elimination 147
47.1.1.3.1.2.1 Method 1: Reaction of ß-Hydroxy Sulfones 148
47.1.1.3.1.2.2 Method 2: Reaction of Sulfones Bearing a ß-Leaving Group 153
47.1.1.3.1.2.2.1 Variation 1: By Cleavage of the C--S Bond Followed by the C--O Bond 153
47.1.1.3.1.2.2.2 Variation 2: By Cleavage of the C--O Bond Followed by the C--S Bond 156
47.1.1.3.1.2.3 Method 3: Reaction of ß-Mesyloxy and ß-Acetoxy Sulfoxides 159
47.1.1.3.1.2.4 Method 4: Reaction of ß-Benzoyloxy Sulfoxides 161
47.1.1.3.1.2.5 Method 5: Reaction of ß-Hydroxy Sulfoximides 163
47.1.1.3.2 Julia--Kocienski and S. Julia Alkenation 164
47.1.1.3.2.1 Method 1: Addition to Carbonyl Compounds 173
47.1.1.3.2.1.1 Variation 1: 1,2-Disubstituted Alkenes 173
47.1.1.3.2.1.2 Variation 2: Trisubstituted Alkenes 176
47.1.1.3.2.2 Method 2: Addition to Lactones 177
47.1.1.4 Alkenation with Metal Carbenes and Related Reactions 182
47.1.1.4.1 Method 1: Synthesis by Methylenation with (µ-Chloro)bis-(.5-cyclopentadienyl)(dimethylaluminum)-(µ-methylene)titanium (The Tebbe Reagent) 183
47.1.1.4.1.1 Variation 1: Methylenation of Aldehydes 187
47.1.1.4.1.2 Variation 2: Methylenation of Ketones 189
47.1.1.4.1.3 Variation 3: Methylenation of Esters 192
47.1.1.4.1.4 Variation 4: Methylenation of Lactones 195
47.1.1.4.1.5 Variation 5: Methylenation of Miscellaneous Carbonyl Compounds 196
47.1.1.4.2 Method 2: Synthesis by Methylenation with Titanacyclobutanes 197
47.1.1.4.3 Method 3: Synthesis by Methylenation with Bis(.5-cyclopentadienyl)dimethyltitanium(IV) (The Petasis Reagent) 198
47.1.1.4.3.1 Variation 1: Methylenation of Aldehydes 202
47.1.1.4.3.2 Variation 2: Methylenation of Ketones 204
47.1.1.4.3.3 Variation 3: Methylenation of Esters 206
47.1.1.4.3.4 Variation 4: Methylenation of Lactones 209
47.1.1.4.3.5 Variation 5: Methylenation of 1,3-Dioxolan-4-ones and 1,3-Dioxan-4-ones 216
47.1.1.4.3.6 Variation 6: Methylenation of Carbonates 220
47.1.1.4.3.7 Variation 7: Methylenation of Amides and Lactams 221
47.1.1.4.3.8 Variation 8: Methylenation of Miscellaneous Carbonyl Compounds 223
47.1.1.4.4 Method 4: Synthesis by Methylenation with gem-Dimetallic Reagents 225
47.1.1.4.4.1 Variation 1: Methylenation with the Nysted Reagent 228
47.1.1.4.4.2 Variation 2: Methylenation with Dibromomethane--Zinc--Titanium(IV) Chloride Reagents 229
47.1.1.4.4.3 Variation 3: Methylenation with Diiodomethane--Zinc Reagents 233
47.1.1.4.4.4 Variation 4: Methylenation with Dihalomethane--Magnesium Reagents 235
47.1.1.4.5 Method 5: Synthesis by Methylenation with Molybdenum and Tungsten Carbenes 237
47.1.1.4.6 Method 6: Synthesis by Methylenation with Diazo Compounds under Metal Catalysis 239
47.1.1.4.7 Method 7: Synthesis by Alkylidenation with Dialkylbis-(.5-cyclopentadienyl)titanium(IV) Reagents (Petasis Alkenation) 241
47.1.1.4.7.1 Variation 1: Using Dibenzylbis(.5-cyclopentadienyl)titanium(IV) Reagents 244
47.1.1.4.7.2 Variation 2: Using Bis(.5-cyclopentadienyl)dicyclopropyltitanium(IV) 245
47.1.1.4.7.3 Variation 3: Using .5-Cyclopentadienyl[(trimethylsilyl)methyl]-titanium(IV) Reagents 246
47.1.1.4.8 Method 8: Synthesis by Alkylidenation with Low-Valent Titanium Reagents (Takeda Alkenation) 248
47.1.1.4.8.1 Variation 1: Using Alkyl Halides 249
47.1.1.4.8.2 Variation 2: Using gem-Dihalides 250
47.1.1.4.8.3 Variation 3: Using Dithioacetals 251
47.1.1.4.8.4 Variation 4: Intramolecular Carbonyl Alkylidenation 252
47.1.1.4.9 Method 9: Synthesis by Alkylidenation with gem-Dimetallic Reagents 253
47.1.1.4.10 Method 10: Synthesis by Halomethylenation 255
47.1.1.4.10.1 Variation 1: Using Chromium Reagents (Takai Alkenation) 256
47.1.1.4.10.2 Variation 2: Using Titanium Reagents 257
47.1.1.4.11 Method 11: Synthesis by Allenation with Titanium Carbenes 257
47.1.1.4.11.1 Variation 1: Using Titanacyclobutanes 258
47.1.1.4.11.2 Variation 2: Using Alkenylbis(.5-cyclopentadienyl)titanium(IV) Reagents 259
47.1.1.4.11.3 Variation 3: Using 1,1-Dichloroalkenes 261
47.1.1.5 McMurry Coupling and Related Reductive Dimerization Reactions 268
47.1.1.5.1 Method 1: Self-Coupling Reactions 268
47.1.1.5.1.1 Variation 1: Of Aldehydes 268
47.1.1.5.1.2 Variation 2: Of Ketones 279
47.1.1.5.2 Method 2: Mixed Coupling Reactions 294
47.1.1.5.2.1 Variation 1: Of Aldehydes 295
47.1.1.5.2.2 Variation 2: Of Ketones 296
47.1.1.5.2.3 Variation 3: Of Aldehydes and Ketones 299
47.1.1.5.2.4 Variation 4: Sequential Cyclization Reactions of Dicarbonyl Compounds 301
47.1.1.5.3 Method 3: Intramolecular Coupling Reactions 309
47.1.1.5.3.1 Variation 1: Cyclization of Aliphatic Dialdehydes, Diketones, and Oxoaldehydes 309
47.1.1.5.3.2 Variation 2: Synthesis of [2.n]Cyclophan-1-enes by Cyclization of Two Aromatic Carbonyl Moieties Tethered by an Aliphatic Chain 316
47.1.1.5.3.3 Variation 3: Synthesis of [2.n]Cyclophan-1-enes by Cyclization of Bis(aromatic aldehydes and ketones) with Tethers Containing Aromatic Rings 319
47.1.1.5.3.4 Variation 4: Synthesis of Ethene-1,2-diyl-Bridged Calix[4]arenes by Intramolecular Cyclization of Formyl-Substituted Calixarenes 322
47.1.1.5.3.5 Variation 5: Synthesis of Cyclic Phenylenevinylenes and Related Polyaromatics by Intramolecular Coupling of Conjugated Diformyl Compounds Linked with Phenylene and/or Vinylene Moieties 324
47.1.1.5.3.6 Variation 6: Synthesis of Tetrapyrrolic Macrocycles by Intramolecular Coupling of Formyl Groups at the Ends of Acyclic Tetrapyrroles 327
47.1.1.5.3.7 Variation 7: Synthesis of Ferrocenophanes by Intramolecular Coupling of Ferrocene-Derived Bis(aldehydes) 327
47.1.1.5.3.8 Variation 8: Synthesis of Condensed Polyaromatics by Intramolecular Coupling of 2,2'-Diformylbiaryls and Related Compounds 329
47.1.1.5.3.9 Variation 9: Synthesis of Heterocycles by Intramolecular Cyclization of Bis(aldehydes) and Bis(ketones) with a Heteroatom-Containing Tether 332
47.1.1.5.3.10 Variation 10: Synthesis of Annulenes by Intramolecular Coupling of Conjugated Polyene Dialdehydes and Ketones 335
47.1.1.5.3.11 Variation 11: Miscellaneous Reactions 338
47.1.1.5.4 Method 4: Coupling in Polymer Synthesis 339
47.1.1.6 Alkene Metathesis 348
47.1.1.6.1 Method 1: Cross Metathesis of a Reactive Alkene 353
47.1.1.6.1.1 Variation 1: Reaction with a Fast Homodimerizing Metathesis Partner 354
47.1.1.6.1.2 Variation 2: Reaction with a Very Slow Homodimerizing Metathesis Partner 361
47.1.1.6.1.3 Variation 3: Reaction with a Very Slow Homodimerizing Metathesis Partner or a Spectator 375
47.1.1.6.2 Method 2: Ring-Closing Metathesis 385
47.1.1.6.2.1 Variation 1: Synthesis of Cycloalkenes with Disubstituted Double Bonds 385
47.1.1.6.2.2 Variation 2: Synthesis of Cycloalkenes with Trisubstituted Double Bonds 401
47.1.1.6.2.3 Variation 3: Synthesis of Cycloalkenes with Tetrasubstituted Double Bonds 407
47.1.1.6.3 Method 3: Ene--Yne Metathesis 412
47.1.1.6.3.1 Variation 1: Cross Ene--Yne Metathesis 413
47.1.1.6.3.2 Variation 2: Ring-Closing Ene--Yne Metathesis 423
47.1.1.6.4 Method 4: Acyclic Diene Metathesis Polymerization 436
47.1.1.6.5 Method 5: Ring-Opening Metathesis 440
47.1.1.6.5.1 Variation 1: Ethenolysis 440
47.1.1.6.5.2 Variation 2: Ring-Opening with Concomitant Cross Metathesis 441
47.1.1.6.5.3 Variation 3: Ring-Opening with Concomitant Ring-Closing Metathesis 446
47.1.1.6.6 Method 6: Ring-Opening Metathesis Polymerization 449
47.1.2 Synthesis by Metal-Mediated Coupling Reactions 460
47.1.2.1 Cross-Coupling and Heck Reactions 460
47.1.2.1.1 Palladium-Catalyzed C--C Coupling Reactions 461
47.1.2.1.1.1 Method 1: Synthesis by the Mizoroki--Heck Reaction 461
47.1.2.1.1.2 Method 2: Synthesis by Suzuki--Miyaura Coupling 463
47.1.2.1.1.2.1 Variation 1: Reaction of B-Alkenyl Compounds with Alkyl Electrophiles 463
47.1.2.1.1.2.2 Variation 2: Reaction of B-Alkyl Compounds with Alkenyl Electrophiles 464
47.1.2.1.1.3 Method 3: Synthesis by Kosugi--Migita--Stille Coupling 468
47.1.2.1.1.3.1 Variation 1: Reaction of Alkenylstannanes with Alkyl Electrophiles 468
47.1.2.1.1.3.2 Variation 2: Reaction of Alkylstannanes with Alkenyl Electrophiles 470
47.1.2.1.1.4 Method 4: Synthesis by Corriu--Kumada--Tamao Coupling 471
47.1.2.1.1.4.1 Variation 1: Reaction of Alkyl Grignard Compounds with Alk-1-enyl Halides 472
47.1.2.1.1.4.2 Variation 2: Reaction of Grignard Reagents with Allyl Electrophiles 473
47.1.2.1.1.5 Method 5: Synthesis by Negishi Coupling 474
47.1.2.1.1.5.1 Variation 1: Reaction of Alkylzinc Compounds with Alkenyl Electrophiles 474
47.1.2.1.1.5.2 Variation 2: Reaction of Alkenylzinc Reagents with Alkyl Electrophiles 476
47.1.2.1.1.5.3 Variation 3: Reaction of Alkenylzirconium Compounds with Alkyl Electrophiles 478
47.1.2.1.1.5.4 Variation 4: Reaction of Alkenylaluminum Compounds with Alkyl Electrophiles 479
47.1.2.1.1.6 Method 6: Synthesis by Organoindium Cross-Coupling Reactions 479
47.1.2.1.2 Nickel-Catalyzed C--C Coupling Reactions 481
47.1.2.1.2.1 Method 1: Synthesis by Suzuki--Miyaura Coupling 481
47.1.2.1.2.2 Method 2: Synthesis by Negishi Coupling 482
47.1.2.1.2.3 Method 3: Synthesis by Corriu--Kumada--Tamao Coupling 484
47.1.2.1.2.3.1 Variation 1: Reaction of Alkyl Grignard Reagents with Alkenyl Electrophiles 484
47.1.2.1.2.3.2 Variation 2: Reaction of Grignard Reagents with Dithioacetals 485
47.1.2.1.3 Iron-Catalyzed C--C Coupling Reactions 486
47.1.2.1.3.1 Method 1: Synthesis by Desulfinylative Mizoroki--Heck-Type Reaction 487
47.1.2.1.3.1.1 Variation 1: Reaction of Alkenyl Grignard Reagents with Alkanesulfonyl Chlorides 487
47.1.2.1.3.2 Method 2: Synthesis by Corriu--Kumada--Tamao Coupling 488
47.1.2.1.3.2.1 Variation 1: Reaction of Alkyl Grignard Reagents with Alkenyl Electrophiles 488
47.1.2.1.3.2.2 Variation 2: Reaction of Alkenyl Grignard Compounds with Alkyl Electrophiles 489
47.1.2.1.3.2.3 Variation 3: Reaction of Grignard Reagents with Allyl Electrophiles 490
47.1.2.1.4 Cobalt-Catalyzed C--C Coupling Reactions 491
47.1.2.1.4.1 Method 1: Synthesis by Corriu--Kumada--Tamao Coupling 491
47.1.2.1.4.1.1 Variation 1: Reaction of Alkyl Grignard Reagents with Alkenyl Electrophiles 491
47.1.2.1.4.1.2 Variation 2: Reaction of Allyl Grignard Reagents with Alkyl Electrophiles 492
47.1.2.1.4.2 Method 2: Synthesis by Negishi Coupling 493
47.1.2.1.4.2.1 Variation 1: Coupling of Alkylzinc Compounds with Alkenyl Electrophiles 493
47.1.2.1.4.2.2 Variation 2: Coupling of Alkylzinc Compounds with Allyl Electrophiles 494
47.1.2.1.4.2.3 Variation 3: Reaction of Arylzinc Compounds with Allyl Electrophiles 494
47.1.2.2 SN' Allylations 502
47.1.2.2.1 Method 1: Synthesis of Alkenes Using Grignard Reagents 502
47.1.2.2.1.1 Variation 1: Catalyzed Reactions with Achiral Catalysts 503
47.1.2.2.1.2 Variation 2: Catalyzed Reactions with Chiral Catalysts 511
47.1.2.2.2 Method 2: Synthesis of Alkenes Using Organocopper Reagents 515
47.1.2.2.3 Method 3: Synthesis of Alkenes Using Lithium Organocuprate Reagents 517
47.1.2.2.3.1 Variation 1: Using Lower-Order Lithium Organocuprate Reagents 517
47.1.2.2.3.2 Variation 2: Using Lithium Heteroorganocuprate Reagents 520
47.1.2.2.3.3 Variation 3: Using Higher-Order Lithium Organocuprate Reagents 522
47.1.2.2.4 Method 4: Synthesis of Alkenes Using Organozinc Reagents 525
47.1.2.2.4.1 Variation 1: Using Zinc Organocuprate Reagents 525
47.1.2.2.4.2 Variation 2: Using Diorganozinc Reagents 530
47.1.2.2.5 Method 5: Synthesis of Alkenes Using Organoaluminum Reagents 533
47.1.2.3 p-Allyl Substitution 538
47.1.2.3.1 Palladium-Catalyzed Reactions 538
47.1.2.3.1.1 Method 1: Synthesis of Alkenes Using Carbon Nucleophiles 538
47.1.2.3.1.1.1 Variation 1: Using Nonstabilized or Stabilized Enolates 538
47.1.2.3.1.1.2 Variation 2: Using Miscellaneous Nucleophiles 541
47.1.2.3.1.2 Method 2: Synthesis of Alkenes Using Nitrogen, Oxygen, or Sulfur Nucleophiles 549
47.1.2.3.2 Other Metal-Catalyzed Reactions 553
47.1.2.3.2.1 Method 1: Synthesis of Alkenes Using Iron Catalysts 553
47.1.2.3.2.2 Method 2: Synthesis of Alkenes Using Ruthenium Catalysts 555
47.1.2.3.2.3 Method 3: Synthesis of Alkenes Using Miscellaneous Metal Catalysts 560
47.1.2.4 Oligomerization of Alkenes to Higher Alkenes 570
47.1.2.4.1 Method 1: Oligomerization of Ethene 570
47.1.2.4.1.1 Variation 1: Using Metallocenes and Related Complexes 570
47.1.2.4.1.2 Variation 2: Using Tridentate Bis(imino)pyridine Complexes of Transition Metals 572
47.1.2.4.1.3 Variation 3: Using SHOP-Type and Related Complexes 574
47.1.2.4.2 Method 2: Oligomerization of Propene 575
47.1.2.4.3 Method 3: Oligomerization of Higher Alk-1-enes 577
Keyword Index 582
Author Index 616
Abbreviations 648

Erscheint lt. Verlag 14.5.2014
Reihe/Serie Science of Synthesis
Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Alkenes • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • compounds with all-carbon functions • cycloalkenes • ethene • ETH ENE • hydrocarbon alkenes • isomeric butenes • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • propene • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-13 9783131722713 / 9783131722713
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich