Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Capturing Connectivity and Causality in Complex Industrial Processes (eBook)

eBook Download: PDF
2014 | 2014
XIII, 91 Seiten
Springer International Publishing (Verlag)
978-3-319-05380-6 (ISBN)

Lese- und Medienproben

Capturing Connectivity and Causality in Complex Industrial Processes - Fan Yang, Ping Duan, Sirish L. Shah, Tongwen Chen
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This brief reviews concepts of inter-relationship in modern industrial processes, biological and social systems. Specifically ideas of connectivity and causality within and between elements of a complex system are treated; these ideas are of great importance in analysing and influencing mechanisms, structural properties and their dynamic behaviour, especially for fault diagnosis and hazard analysis. Fault detection and isolation for industrial processes being concerned with root causes and fault propagation, the brief shows that, process connectivity and causality information can be captured in two ways:

·      from process knowledge: structural modeling based on first-principles structural models can be merged with adjacency/reachability matrices or topology models obtained from process flow-sheets described in standard formats; and

·      from process data: cross-correlation analysis, Granger causality and its extensions, frequency domain methods, information-theoretical methods, and Bayesian networks can be used to identify pair-wise relationships and network topology.

These methods rely on the notion of information fusion whereby process operating data is combined with qualitative process knowledge, to give a holistic picture of the system.



The authors jointly have extensive research experience in modeling, control, and monitoring of complex industrial processes. In particular, they have worked on industrial projects in oil and petrochemical sectors to address safety, alarm, and fault diagnosis issues from operating plants. Moreover, they have conducted research in the related areas on capturing connectivity and causality using process data and various forms of process knowledge; their research results have been published in international journals, benefiting the automation community. Realizing the importance of capturing connectivity and causality in real-world problems, and summarizing their knowledge and understanding on various approaches currently available, the authors have made a great effort in presenting this brief as an introduction, a survey, and also a tutorial on this seasoned topic.

The authors jointly have extensive research experience in modeling, control, and monitoring of complex industrial processes. In particular, they have worked on industrial projects in oil and petrochemical sectors to address safety, alarm, and fault diagnosis issues from operating plants. Moreover, they have conducted research in the related areas on capturing connectivity and causality using process data and various forms of process knowledge; their research results have been published in international journals, benefiting the automation community. Realizing the importance of capturing connectivity and causality in real-world problems, and summarizing their knowledge and understanding on various approaches currently available, the authors have made a great effort in presenting this brief as an introduction, a survey, and also a tutorial on this seasoned topic.

Introduction.- Examples of Applications for Connectivity and Causality Analysis.- Description of Connectivity and Causality.- Capturing Connectivity and Causality from Process Knowledge.- Capturing Causality from Process Data.- Case Studies.

Erscheint lt. Verlag 1.4.2014
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
Zusatzinfo XIII, 91 p. 54 illus., 24 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Chemie
Technik
Schlagworte Causal Relationship • Complexity • Complex Systems • Data Mining • Fault Diagnosis • Process Connectivity • Process Knowledge • System Topology
ISBN-10 3-319-05380-9 / 3319053809
ISBN-13 978-3-319-05380-6 / 9783319053806
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
CHF 24,40