Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Attosecond and XUV Physics (eBook)

Ultrafast Dynamics and Spectroscopy

Thomas Schultz, Marc Vrakking (Herausgeber)

eBook Download: PDF | EPUB
2013
Wiley-VCH (Verlag)
978-3-527-67765-8 (ISBN)

Lese- und Medienproben

Attosecond and XUV Physics -
Systemvoraussetzungen
Systemvoraussetzungen
151,99 inkl. MwSt
(CHF 148,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides fundamental knowledge in the fields of attosecond science and free electron lasers, based on the insight that the further development of both disciplines can greatly benefit from mutual exposure and interaction between the two communities.
With respect to the interaction of high intensity lasers with matter, it covers ultrafast lasers, high-harmonic generation, attosecond pulse generation and characterization. Other chapters review strong-field physics, free electron lasers and experimental instrumentation.
Written in an easy accessible style, the book is aimed at graduate and postgraduate students so as to support the scientific training of early stage researchers in this emerging field. Special emphasis is placed on the practical approach of building experiments, allowing young researchers to develop a wide range of scientific skills in order to accelerate the development of spectroscopic techniques and their implementation in scientific experiments.
The editors are managers of a research network devoted to the education of young scientists, and this book idea is based on a summer school organized by the ATTOFEL network.


Thomas Schultz coordinates scientific aspects of the ATTOFEL network. He graduated from ETH Zurich. After receiving his PhD in Chemistry he became a visiting Visiting Fellow at the Femtosecond Research Program in the National Research Council Canada. Since 2003 He is a Project leader at the Max Born Institute in Berlin. His research explores the photochemical elementary reactions in biologically relevant systems through ionization spectroscopy of molecules and clusters.
Marc Vrakking is Scientific Director of the Attoscience Group at the Max Born Institute in Berlin, Germany. He graduated in Physics and received his PhD in Chemistry from the University of California Berkeley, USA. He was a Professor of Physics at the University of Nijmegen, NL, and has served as group leader in XUV Physics at AMOLF. In 2010 he joined the Max Born Institute, and has been appointed Professor of Physics at the Free University of Berlin.

Thomas Schultz coordinates scientific aspects of the ATTOFEL network. He graduated from ETH Zürich. After receiving his PhD in Chemistry he became a visiting Visiting Fellow at the Femtosecond Research Program in the National Research Council Canada. Since 2003 He is a Project leader at the Max Born Institute in Berlin. His research explores the photochemical elementary reactions in biologically relevant systems through ionization spectroscopy of molecules and clusters. Marc Vrakking is Scientific Director of the Attoscience Group at the Max Born Institute in Berlin, Germany. He graduated in Physics and received his PhD in Chemistry from the University of California Berkeley, USA. He was a Professor of Physics at the University of Nijmegen, NL, and has served as group leader in XUV Physics at AMOLF. In 2010 he joined the Max Born Institute, and has been appointed Professor of Physics at the Free University of Berlin.

Cover 1
Titlepage 5
Copyright 6
Contents 7
List of Contributors 15
1 Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy 19
1.1 Introduction 19
1.2 The Emergence of Attosecond Science 20
1.2.1 Attosecond Pulse Trains and Isolated Attosecond Pulses 21
1.2.2 Characterization of Attosecond Laser Pulses 22
1.2.3 Experimental Challenges in Attosecond Science 23
1.2.4 Attosecond Science as a Driver for Technological Developments 24
1.3 Applications of Attosecond Laser Pulses 25
1.4 Ultrafast Science Using XUV/X-ray Free Electron Lasers 27
1.5 The Interplay between Experiment and Theory 29
1.6 Conclusion and Outlook 30
References 31
Part One Laser Techniques 35
2 Ultrafast Laser Oscillators and Amplifiers 37
2.1 Introduction 37
2.2 Mode-Locking and Few-Cycle Pulse Generation 38
2.3 High-Energy Oscillators 41
2.4 Laser Amplifiers 43
References 47
3 Ultrashort Pulse Characterization 55
3.1 Motivation: Why Ultrafast Metrology? 55
3.1.1 Ultrafast Science: High-Speed Photography in the Extreme 56
3.2 Formal Description of Ultrashort Pulses 60
3.2.1 Sampling Theorem 63
3.2.2 Chronocyclic Representation of Ultrafast Pulses 64
3.2.3 Space-Time Coupling 64
3.2.4 Accuracy, Precision and Consistency 67
3.3 Linear Filter Analysis 69
3.4 Ultrafast Metrology in the Visible to Infrared 71
3.4.1 Temporal Correlations 71
3.4.2 Spectrography 73
3.4.3 Sonography 78
3.4.4 Tomography 78
3.4.5 Interferometry 81
3.5 Ultrafast Metrology in the Extreme Ultraviolet 91
3.5.1 Complete Characterization of Ultrashort XUV Pulses via Photoionization Spectroscopy 93
3.5.2 XUV Interferometry 99
3.6 Summary 103
References 103
4 Carrier Envelope Phase Stabilization 113
4.1 Introduction 113
4.2 CEP Fundamentals 114
4.2.1 Time Domain Representation 114
4.2.2 Frequency Domain Representation 115
4.3 Stabilization Loop Fundamentals 117
4.3.1 The Noisy Source 117
4.3.2 Noise Detection 118
4.3.3 Open-Loop Noise Analysis 119
4.3.4 Feedback 120
4.3.5 Closed-Loop Noise Analysis 121
4.4 CEP in Oscillators 122
4.4.1 Oscillators Peculiarities 123
4.4.2 CEP Detection 125
4.4.3 Actuation 128
4.5 CEP in Amplifiers 133
4.5.1 Amplifier Peculiarities 134
4.5.2 CEP Detection 137
4.5.3 Actuation 141
4.5.4 Feedback Results 142
4.5.5 Parametric Amplification 144
4.6 Conclusion 147
References 147
5 Towards Tabletop X-Ray Lasers 153
5.1 Context and Objectives 153
5.2 Choice of Plasma-Based Soft X-Ray Amplifier 155
5.2.1 Basic Aspects of High Harmonic Amplification 156
5.2.2 Basic Aspects of Plasma Amplifiers 158
5.3 2D Fluid Modeling and 3D Ray Trace 159
5.3.1 ARWEN Code 160
5.3.2 Model to Obtain 2D Maps of Atomic Data 161
5.4 The Bloch–Maxwell Treatment 167
5.5 Stretched Seed Amplification 175
5.6 Conclusion 188
References 189
Part Two Theoretical Methods 195
6 Ionization in Strong Low-Frequency Fields 197
6.1 Preliminaries 197
6.2 Speculative Thoughts 197
6.3 Basic Formalism 199
6.3.1 Hamiltonians and Gauges 199
6.3.2 Formal Solutions 200
6.4 The Strong-Field Approximation 202
6.4.1 The Volkov Propagator and the Classical Connection 203
6.4.2 Transition Amplitudes in the SFA 204
6.5 Strong-Field Ionization: Exponential vs. Power Law 207
6.5.1 The Saddle Point Approximation and the Classical Connection 208
6.6 Semiclassical Picture of High Harmonic Generation 213
6.7 Conclusion 216
References 217
7 Multielectron High Harmonic Generation: Simple Man on a Complex Plane 219
7.1 Introduction 219
7.2 The Simple Man Model of High Harmonic Generation (HHG) 221
7.3 Formal Approach for One-Electron Systems 223
7.4 The Lewenstein Model: Saddle Point Equations for HHG 227
7.5 Analysis of the Complex Trajectories 232
7.6 Factorization of the HHG Dipole: Simple Man on a Complex Plane 239
7.6.1 Factorization of the HHG Dipole in the Frequency Domain 240
7.6.2 Factorization of the HHG Dipole in the Time Domain 242
7.7 The Photoelectron Model of HHG: The Improved Simple Man 245
7.8 The Multichannel Model of HHG: Tackling Multielectron Systems 249
7.9 Outlook 256
7.10 Appendix A: Supplementary Derivations 259
7.11 Appendix B: The Saddle Point Method 260
7.11.1 Integrals on the Real Axis 261
7.11.2 Stationary Phase Method 266
7.12 Appendix C: Treating the Cutoff Region: Regularization of Divergent Stationary Phase Solutions 268
7.13 Appendix D: Finding Saddle Points for the Lewenstein Model 269
References 271
8 Time-Dependent Schrödinger Equation 275
8.1 Atoms and Molecules in Laser Fields 276
8.2 Solving the TDSE 277
8.2.1 Discretization of the TDSE 278
8.2.2 Finite Elements 281
8.2.3 Scaling with Laser Parameters 283
8.3 Time Propagation 284
8.3.1 Runge–Kutta Methods 285
8.3.2 Krylov Subspace Methods 286
8.3.3 Split-Step Methods 287
8.4 Absorption of Outgoing Flux 287
8.4.1 Absorption for a One-Dimensional TDSE 288
8.5 Observables 290
8.5.1 Ionization and Excitation 290
8.5.2 Harmonic Response 292
8.5.3 Photoelectron Spectra 293
8.6 Two-Electron Systems 296
8.6.1 Very Large-Scale Grid-Based Approaches 296
8.6.2 Basis and Pseudospectral Approaches 296
8.7 Few-Electron Systems 300
8.7.1 MCTDHF: Multiconfiguration Time-Dependent Hartree–Fock 301
8.7.2 Dynamical Multielectron Effects in High Harmonic Generation 303
8.8 Nuclear Motion 305
References 308
9 Angular Distributions in Molecular Photoionization 311
9.1 Introduction 311
9.2 One-Photon Photoionization in the Molecular Frame 315
9.3 Methods for Computing Cross-Sections 320
9.4 Post-orientation MFPADs 322
9.4.1 MFPADs for Linear Molecules in the Axial Recoil Approximation 322
9.4.2 MFPADs for Nonlinear Molecules in the Axial Recoil Approximation 324
9.4.3 Breakdown of the Axial Recoil Approximation Due to Rotation 326
9.4.4 Breakdown of the Axial Recoil Approximation Due to Vibrational Motion 327
9.4.5 Electron Frame Photoelectron Angular Distributions 327
9.5 MFPADs from Concurrent Orientation in Multiphoton Ionization 328
9.6 Pre-orientation or Alignment, Impulsive Alignment 332
9.7 Conclusions 333
References 333
Part Three High Harmonic Generation and Attosecond Pulses 339
10 High-Order Harmonic Generation and Attosecond Light Pulses: An Introduction 341
10.1 Early Work, 1987–1993 341
10.2 Three-Step Model, 1993–1994 343
10.3 Trajectories and Phase Matching, 1995–2000 346
10.4 Attosecond Pulses 2001 349
10.5 Conclusion 350
References 353
11 Strong-Field Interactions at Long Wavelengths 357
11.1 Theoretical Background 358
11.1.1 Keldysh Picture of Ionization in Strong Fields 358
11.1.2 Classical Perspectives on Postionization Dynamics 359
11.1.3 High-Harmonic Generation 360
11.1.4 Wavelength Scaling of High-Harmonic Cutoff and Attochirp 360
11.1.5 In-situ and RABBITT Technique 362
11.2 Mid-IR Sources and Beamlines at OSU 364
11.2.1 2-µm Source 364
11.2.2 3.6-µm Source 365
11.2.3 OSU Attosecond Beamline 365
11.3 Strong-Field Ionization: The Single-Atom Response 366
11.4 High-Harmonic Generation 368
11.4.1 Harmonic Cutoff and Harmonic Yield 368
11.4.2 Attochirp 370
11.4.3 In-situ Phase Measurement 370
11.4.4 RABBITT Method 373
11.5 Conclusions and Future Perspectives 374
References 374
12 Attosecond Dynamics in Atoms 379
12.1 Introduction 379
12.2 Single-Electron Atom: Hydrogen 380
12.3 Two-Electron Atom: Helium 383
12.3.1 Electronic Wave Packets 384
12.3.2 Autoionization: Fano Profile 389
12.3.3 Two-Photon Double Ionization 391
12.4 Multielectron Systems 398
12.4.1 Neon: Dynamics of Shake-Up States 399
12.4.2 Neon: Delay in Photoemission 402
12.4.3 Argon: Fano Resonance 404
12.4.4 Krypton: Auger Decay 406
12.4.5 Krypton: Charge Oscillation 408
12.4.6 Xenon: Cascaded Auger Decay 409
References 411
13 Application of Attosecond Pulses to Molecules 413
13.1 Attosecond Dynamics in Molecules 413
13.2 State-of-the-Art Experiments Using Attosecond Pulses 415
13.2.1 Ion Spectroscopy 416
13.2.2 Electron Spectroscopy 420
13.2.3 Photo Absorption 422
13.3 Theoretical Work 423
13.3.1 Electron Dynamics in Small Molecules 423
13.3.2 Electron Dynamics in Large Molecules 424
13.4 Perspectives 431
13.4.1 Molecular Alignment and Orientation 431
13.4.2 Electron Delocalization between DNA Group Junction 432
13.4.3 Similar Dynamics in Water and Ice 434
13.4.4 More 434
13.5 Conclusion 434
References 435
14 Attosecond Nanophysics 439
14.1 Introduction 439
14.2 Attosecond Light-Field Control of Electron Emission and Acceleration from Nanoparticles 443
14.2.1 Imaging of the Electron Emission from Isolated Nanoparticles 444
14.2.2 Microscopic Analysis of the Electron Emission 447
14.3 Few-Cycle Pump-Probe Analysis of Cluster Plasmons 451
14.3.1 Basics of Spectral Interferometry 451
14.3.2 Oscillator Model Results for Excitation with Gaussian Pulses 453
14.3.3 Spectral Interferometry Analysis of Plasmons in Small Sodium Clusters 455
14.4 Measurements of Plasmonic Fields with Attosecond Time Resolution 457
14.4.1 Attosecond Nanoplasmonic Streaking 457
14.4.2 The Regimes of APS Spectroscopy 459
14.4.3 APS Spectroscopy of Collective Electron Dynamics in Isolated Nanoparticles 460
14.4.4 Attosecond Nanoscope 462
14.4.5 Experimental Implementation of the Attosecond Nanoscope 464
14.5 Nanoplasmonic Field-Enhanced XUV Generation 467
14.5.1 Tailoring of Nanoplasmonic Field Enhancement for HHG 468
14.5.2 Generation of Single Attosecond XUV Pulses in Nano-HHG 470
14.6 Conclusions and Outlook 472
References 473
Part Four Ultra Intense X-Ray Free Electron Laser Experiments 481
15 Strong-Field Interactions at EUV and X-Ray Wavelengths 483
15.1 Introduction 483
15.2 Experimental Background 485
15.2.1 What Is a "Strong" Field? 485
15.2.2 Basic Parameters of Intense High-Frequency Radiation Sources 487
15.2.3 Detection Systems 489
15.3 Atoms and Molecules under Intense EUV Light 491
15.3.1 Two-Photon Single Ionization of Helium 491
15.3.2 Few-Photon Double Ionization of Helium and Neon 494
15.3.3 Multiple Ionization of Atoms 503
15.3.4 EUV-Induced Fragmentation of Simple Molecules 505
15.4 EUV Pump–EUV Probe Experiments 511
15.4.1 Split-and-Delay Arrangements and Characterization of the EUV Pulses 511
15.4.2 Nuclear Wave Packet Imaging in Diatomic Molecules 513
15.4.3 Isomerization Dynamics of Acetylene Cations 516
15.5 Experiments in the X-Ray Domain 517
15.5.1 Multiple Ionization of Heavy Atoms: Role of Resonant Excitations 518
15.5.2 Multiphoton Ionization of Molecules Containing High-Z Atoms 524
15.6 Summary and Outlook 528
References 530
16 Ultraintense X-Ray Interactions at the Linac Coherent Light Source 547
16.1 Introduction 547
16.1.1 Comparison of Ultrafast, Ultraintense Optical, and X-Ray Lasers 549
16.1.2 X-Ray Atom Interactions 551
16.2 Atomic and Molecular Response to Ultraintense X-Ray Pulses 554
16.2.1 Nonresonant High-Intensity X-Ray Phenomena 555
16.2.2 Resonant High-Intensity X-Ray Phenomena 558
16.3 Ultrafast X-Ray Probes of Dynamics 561
16.4 Characterization of LCLS Pulses 562
16.5 Outlook 564
References 567
17 Coherent Diffractive Imaging 575
17.1 Introduction 575
17.2 Far-Field Diffraction 577
17.2.1 Optical Point of View 577
17.2.2 Born Approximation 579
17.2.3 Resolution 580
17.2.4 Comments on the Approximations 582
17.3 Source Requirements 583
17.3.1 Coherence 583
17.3.2 Signal-to-Noise Ratio 586
17.3.3 Dose 587
17.3.4 Different XUV Sources Comparison 590
17.4 Solving the Phase Problem 590
17.4.1 Oversampling Method 590
17.4.2 Basics on Iterative Phasing Algorithms 592
17.4.3 Implementations of Phase Retrieval Algorithms 595
17.5 Holography 601
17.5.1 Fourier Transform Holography 601
17.5.2 HERALDO 605
17.6 Conclusions 608
References 610
Index 617

List of Contributors

Pierre Agostini
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Roger Barlow
University of Huddersfield
Huddersfield
United Kingdom

 

Cosmin I. Blaga
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Willem Boutu
Centre d’Etudes de Saclay
Attophysics Group
Ultrafast Coherent Imaging Lab
CEA-SPAM, Bât. 522
91191 Gif-sur-Yvette
France

 

Francesca Calegari
Department of Physics
Politecnico di Milano
Institute of Photonics and
Nanotechnologies, IFN-CNR
Piazza L. da Vinci 32
20133 Milano
Italy

 

Bertrand Carré
Centre d’Etudes de Saclay
Attophysics Group
CEA-SPAM, Bât.522
91191 Gif-sur-Yvette
France

 

Soo Hoon Chew
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Vincent Crozatier
FASTLITE
Centre scientifique d’Orsay
Bât. 503
Plateau du Moulon, BP 45
91401 Orsay
France

 

Anthony D. DiChiara
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Louis F. DiMauro
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Danielle Dowek
Laboratoire des Collisions Atomiques et
Moléculaires (UMR Université
Paris-Sud et CNRS, 8625), Bât. 351
Université Paris-Sud
91405 Orsay Cedex
France

 

Marta Fajardo
GoLP
Instituto de Plasmas e Fusão Nuclear
Laboratório Associado
Instituto Superior Técnico
Lisbon
Portugal

 

Thomas Fennel
Institut für Physik
Universität Rostock
Universitätsplatz 3
18051 Rostock
Germany

 

Misha Ivanov
Max Born Institute Berlin
Max-Born-Str. 2A
12489 Berlin
Germany

 

Ulf Kleineberg
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Matthias F. Kling
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Manuel Kremer
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Thi Thu Thuy Le
Laboratoire d’Optique Appliquée
ENSTA, CNRS
Ecole Polytechnique
Chemin de la hunière
91671 Palaiseau
France

 

Franck Lépine
Université Lyon 1
ILM-Institut Lumière Matière
Domaine scientifique de la Doua
bâtiment Kastler
10 rue Ada Byron
69622 Villeurbanne CEDEX
France

 

Anne L’Huillier
Lund University
Department of Physics
PO Box 118
22100
Lund Sweden

 

Robert R. Lucchese
Texas A&M University
Department of Chemistry
College Station, TX 77843-3255
USA

 

Matteo Lucchini
Department of Physics
Politecnico di Milano, Institute of
Photonics and Nanotechnologies,
IFN-CNR
Piazza L. da Vinci 32
20133 Milano
Italy

 

Hamed Merdji
Centre d’Etudes de Saclay
Attophysics Group
Ultrafast Coherent Imaging Lab
CEA-SPAM, Bât. 522
91191 Gif-sur-Yvette
France

 

Uwe Morgner
Leibniz Universität Hannover
Institut für Quantenoptik
Welfengarten 1
30167 Hannover
Germany

 

Mauro Nisoli
Department of Physics
Politecnico di Milano, Institute of
Photonics and Nanotechnologies,
IFN-CNR
Piazza L. da Vinci 32
20133 Milano
Italy

 

Eduardo Oliva
Laboratoire d’Optique Appliquée
ENSTA, CNRS
Ecole Polytechnique
Chemin de la hunière
91671 Palaiseau
France

 

David Ros
Université Paris-Sud
Centre Laser de l’Université Paris Sud
(EA.4127)
Bât. 106
91405 Orsay
France

 

Artem Rudenko
Kansas State University
Department of Physics
J.R. Macdonald Laboratory
116 Cardwell Hall
Manhattan, KS 66506
USA

 

Eckart Rühl
Freie Universität Berlin
Institut für Chemie und Biochemie
– Physikalische und Theoretische
Chemie
Takustr. 3
14195 Berlin
Germany

 

Giuseppe Sansone
Department of Physics
Politecnico di Milano, Institute of
Photonics and Nanotechnologies,
IFN-CNR
Piazza L. da Vinci 32
20133 Milano
Italy

 

Stephen B. Schoun
The Ohio State University
Department of Physics
Columbus, OH 43210
USA

 

Stéphane Sebban
Laboratoire d’Optique Appliquée
ENSTA, CNRS
Ecole Polytechnique
Chemin de la hunière
91671 Palaiseau
France

 

Armin Scrinzi
LMU Munich
Arnold Sommerfeld Center
Theresienstrasse 37
80333 Munich
Germany

 

Olga Smirnova
Max Born Institute Berlin
Max-Born-Str.-2A
12489 Berlin
Germany

 

Sarah L. Stebbings
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Mark I. Stockman
Department of Physics and Astronomy
Georgia State University
Atlanta, GA 30303
USA

 

Frederik Süßmann
Physik Department
Ludwig-Maximilians-Universität
München
Am Coulombwall 1
85748 Garching
Germany

 

Pedro Velarde
Universidad Politécnica de Madrid
Instituto de Fusion Nuclear
Madrid
Spain

 

Adam S. Wyatt
University of Oxford
Clarendon Laboratory
Keble Road
Oxford OX1 3RH
United Kingdom

 

Linda Young
Argonne National Laboratory
Argonne, IL 60439
USA

 

Philippe Zeitoun
Laboratoire d’Optique...

Erscheint lt. Verlag 13.11.2013
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Technik
Schlagworte accessible • Analyse u. Charakterisierung von Nanosystemen • Analysis/Characterization of Nanosystems • atomic and molecular physics • Atom- u. Molekülphysik • Atom- u. Molekülphysik • Attosecond • Attosekundenphysik • BEnefiT • Book • Chemie • Chemistry • Comprehensive • Condensed Matter • Development • disciplines • EASY • electron • Emerging Field • Extreme • Fields • graduate • insight • interaction • Introduction • Kondensierte Materie • Laser • Mutual • Nanotechnologie • nanotechnology • Physics • Physik • Practical • Science • Scientific • spectroscopy • Spektroskopie • students • Style • Training
ISBN-10 3-527-67765-8 / 3527677658
ISBN-13 978-3-527-67765-8 / 9783527677658
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 10,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 69,35