Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Multilayer Thin Films (eBook)

Sequential Assembly of Nanocomposite Materials

Gero Decher, Joe B. Schlenoff (Herausgeber)

eBook Download: EPUB
2012 | 2. Auflage
Wiley-VCH (Verlag)
978-3-527-64676-0 (ISBN)

Lese- und Medienproben

Multilayer Thin Films -
Systemvoraussetzungen
367,99 inkl. MwSt
(CHF 359,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This second, comprehensive edition of the pioneering book in this field has been completely revised and extended, now stretching to two volumes. The result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin films, covering organic, inorganic, colloidal, macromolecular and biological components, plus the assembly of nanoscale films derived from them on surfaces. For anyone working in the field as well as scientists and researchers active in materials development who need the key knowledge provided here for linking the fields of molecular self-assembly with materials- and biosciences.

Gero Decher is a Distinguished Professor of Chemistry at the University of Strasbourg, France, a senior member of the Institut Universitaire de France (IUF) and a member of the International Center for Frontier Research in Chemistry. His research team is located at CNRS Institut Charles Sadron in Strasbourg where he continues to develop the layer-by-layer assembly method in collaboration with his colleagues Pierre Schaaf and Jean-Claude Voegel. This method is applied in many laboratories world-wide in various scientific disciplines, including chemistry, materials science and biotechnology. Gero Decher has received numerous awards, including the ECIS-Rhodia prize in 2010 and the Grand Prix of the French 'Academie des Sciences' for Nanobiotechnology in 2009.
Joseph B. Schlenoff is Mandelkern Professor of Polymer Science of the Department of Chemistry and Biochemistry at the Florida State University, USA. His laboratory is engaged in multidisciplinary research centered on the use of novel structures made from polyelectrolytes that are deposited using the layer-by-layer technique. His work, supported by the National Science Foundation and the National Institutes of Health, among others, focuses on fundamental polymer science aspects of polyelectrolyte complexes and on their interactions with biological materials. In 2011, Joseph Schlenoff received a Gutenburg Chair at the University of Strasbourg.

Gero Decher is a Distinguished Professor of Chemistry at the University of Strasbourg, France, a senior member of the Institut Universitaire de France (IUF) and a member of the International Center for Frontier Research in Chemistry. His research team is located at CNRS Institut Charles Sadron in Strasbourg where he continues to develop the layer-by-layer assembly method in collaboration with his colleagues Pierre Schaaf and Jean-Claude Voegel. This method is applied in many laboratories world-wide in various scientific disciplines, including chemistry, materials science and biotechnology. Gero Decher has received numerous awards, including the ECIS-Rhodia prize in 2010 and the Grand Prix of the French "Académie des Sciences" for Nanobiotechnology in 2009. Joseph B. Schlenoff is Mandelkern Professor of Polymer Science of the Department of Chemistry and Biochemistry at the Florida State University, USA. His laboratory is engaged in multidisciplinary research centered on the use of novel structures made from polyelectrolytes that are deposited using the layer-by-layer technique. His work, supported by the National Science Foundation and the National Institutes of Health, among others, focuses on fundamental polymer science aspects of polyelectrolyte complexes and on their interactions with biological materials. In 2011, Joseph Schlenoff received a Gutenburg Chair at the University of Strasbourg.

VOLUME 1

LAYER-BY-LAYER ASSEMBLY (PUTTING MOLECULES TO WORK)
The Whole is More than the Sum of its Parts
From Self-Assembly to Directed Assembly
History and Development of the Layer-by-Layer Assembly Method
LbL-Assembly is the Synthesis of Fuzzy Supramolecular Objects
Reproducibility and Choice of Deposition Conditions
Monitoring Multilayer Build-up
Spray- and Spin-Assisted Multilayer Assembly
Recent Developments
Final Remarks

PART I: Preparation and Characterization

LAYER-BY-LAYER PROCESSED MULTILAYERS: CHALLENGES AND OPPORTUNITIES
Introduction
Fundamental Challenges and Opportunities
The Path Forward

LAYER-BY-LAYER ASSEMBLY: FROM CONVENTIONAL TO UNCONVENTIONAL METHODS
Introduction
Conventional LbL Methods
Unconventional LbL Methods
Summary and Outlook

NOVEL MULTILAYER THIN FILMS: HIERARCHIC LAYER-BY-LAYER (HI-LBL) ASSEMBLIES
Introduction
Hi-LbL for Multi-Cellular Models
Hi-LbL for Unusual Drug Delivery Modes
Hi-LbL for Sensors
Future Perspectives

LAYER-BY-LAYER ASSEMBLY USING HOST-GUEST INTERACTIONS
Introduction
Supramolecular Layer-by-Layer Assembly
3D Patterned Multilayer Assemblies on Surfaces
3D Supramolecular Nanoparticle Crystal Structures
Porous 3D Supramolecular Assemblies in Solution
Conclusions

LBL ASSEMBLIES USING VAN DER WAALS OR AFFINITY INTERACTIONS AND THEIR APPLICATIONS
Introduction
Stereospecific Template Polymerization of Methacrylates by Stereocomplex Formation in Nanoporous LbL Films
Preparation and Properties of Hollow Capsules Composed of Layer-by-Layer Polymer Films Constructed through van der Waals Interactions
Fabrication of Three-Dimensional Cellular Multilayers Using Layer-by-Layer Protein Nanofilms Constructed through Affinity Interaction
Conclusion

LAYER-BY-LAYER ASSEMBLY OF POLYMERIC COMPLEXES
Introduction
Concept of LbL Assembly of Polymeric Complexes
Structural Tailoring of LbL-Assembled Films of Polymeric Complexes
LbL-Assembled Functional Films of Polymeric Complexes
Summary

MAKING AQUEOUS NANOCOLLOIDS FROM LOW SOLUBILITY MATERIALS: LBL SHELLS ON NANOCORES
Introduction
Formation of Nanocores
Ultrasonication-Assisted LbL Assembly
Solvent-Assisted Precipitation Into Preformed LbL-Coated Soft Organic Nanoparticles
Washless (Titration) LbL Technique
Formation of LbL Shells on Nanocores
Drug Release Study
Conclusions

CELLULOSE FIBERS AND FIBRILS AS TEMPLATES FOR THE LAYER-BY-LAYER (LBL) TECHNOLOGY
Background
Formation of LbLs on Cellulose Fibers
The use of LbL to Improve Adhesion between Wood Fibers
The Use of LbL to Prepare Antibacterial Fibers
The use of NFC/CNC to Prepare Interactive Layers Using the LbL Approach
Conclusions

FREELY STANDING LBL FILMS
Introduction
Fabrication of Freely Standing Ultrathin LbL Films
Porous and Patterned Freely Standing LbL Films
Freely Standing LbL Films with Weak Interactions

NEUTRON REFLECTOMETRY AT POLYELECTROLYTE MULTILAYERS
Introduction
Neutron Reflectometry
Preparation Techniques for Polyelectrolyte Multilayers
Types of Polyelectrolytes
Preparation Parameters
Influence of External Fields After PEM Assembly
PEM as a Structural Unit
Conclusion and Outlook

POLYELECTROLYTE CONFORMATION IN AND STRUCTURE OF POLYELECTROLYTE MULTILAYERS
Introduction
Results
Conclusion and Outlook

CHARGE BALANCE AND TRANSPORT IN ION-PAIRED POLYELECTROLYTE MULTILAYERS
Introduction
Association Mechanism: Competitive Ion Pairing
Surface versus Bulk Polymer Charge
Polyelectrolyte Interdiffusion
Ion Transport Through Multilayers: the "Reluctant" Exchange Mechanism
Concluding Remarks

CONDUCTIVITY SPECTRA OF POLYELECTROLYTE MULTILAYERS REVEALING ION TRANSPORT PROCESSES
Introduction to Conductivity Studies of LbL Films
PEM Spectra: Overview
DC Conductivities of PEMs
Modeling of PEM Spectra
Ion Conduction in Polyelectrolyte Complexes
Scaling Principles in Conductivity Spectra: From Time - Temperature to Time - Humidity Superposition

RESPONSIVE LAYER-BY-LAYER ASSEMBLIES: DYNAMICS, STRUCTURE AND FUNCTION
Introduction
Chain Dynamics and Film Layering
Responsive Swellable LbL Fil Preface
Foreword

PART I: PREPARATION AND CHARACTERIZATION

Layer-by-Layer Processed Multilayers: Challenges and Opportunities
From Conventional to Unconventional Layer-by-Layer Assembly Methods
Hierarchic Multilayer Thin Films
Layer-by-Layer Assembly Using Host-Guest Interactions
LbL Assemblies Using van der Waals or Affinity Interaction and Their Applications
Layer-by-Layer Assembly of Polymeric Complexes
Making Aqueous Nanocolloids from Low Soluble Materials: LbL Shells on Nanocores
Cellulose Fibres and Fibrils as Templates for the Layer-by-Layer (LbL) Technology
Freely Standing LbL Films
Neutron Reflectrometry at Polyelectrolyte Multilayers
Molecular Conformation in and Structural Properties of Polyelectrolyte Multilayers
Ion Doping in Polyelectrolyte Multilayers
Conductivity Spectra of Polyelectrolyte Multilayers Revealing Ion Transport Processes
Layer-by-Layer Assemblies of pH- and Temperature-Responsive Polymers: Molecular Interactions, Exchange with Solution, Film Structure and Response
Tailoring Mechanics of Free-Standing Multilayers
Design and Translation of Nanolayer Assembly Processes: Electrochemical Energy to Programmable Pharmacies
Surface Initiated Polymerization and Layer-by-Layer Films
Quartz Crystal Resonator as a Tool for Following the Buildup of Polyelectrolyte Multilayers

PART II: APPLICATIONS

Electrostatic and Coordinative Supramolecular Assembly of Functional Films for Electronic Applications and Materials Separation
Optoelectronic Materials and Devices Incorporating Polyelectrolyte Multilayers
Nanostructured Electrodes Assembled from Metal Nanoparticles and Quantum Dots in Polyelectrolytes
Advanced Nanoscale Composite Materials with Record Properties by Layer-by-Layer Assembly
Carbon Nanotube Based Assemblies
Nanoconfined Polyelectrolyte Multilayers: From Chain Crowding to Biological Applications
The Design of Polysaccharide Multilayers for Medical Applications
Polyelectrolyte Multilayer Films Based on Polysaccharides: From Physical Chemistry to the Control of Cell Differentiation
Diffusion of Nanoparticles in LbL Films as a New Tool to Produce Multifunctional Coatings
Biological Active Surfaces on Colloids by Means of the Layer-by-Layer Technology
A 'Multilayered' Approach to the Delivery of DNA: Exploiting the Structure of Polyelectrolyte Multilayers to Promote Surface-Mediated Cell Transfection and Multi-Agent Delivery
Designing LbL Capsules for Drug Loading and Release
Stimuli-Sensitive LbL Films for Controlled Delivery of Proteins and Drugs
Assembly of Multilayer Capsules for Drug Encapsulation and Controlled Release
Engineered Thin Films and Capsules for Biomedical Applications
Assembly of Polymer Multilayers from Organic Solvents for Biomolecule Encapsulation
Stimuli-Responsive LbL Capsules
Domain-Containing Polyelectrolyte Films for the Entrapment of Active Compounds
Ion Transport through Polyelectrolyte Multilayers
Remote Release from Multilayer Capsules and Films
Controlled Architectures in LbL Films for Sensing and Biosensing
Patterned Multilayer Systems and Directed Self-Assembly of Functional Nano-Bio Materials
Electrochemically Active LbL Multilayer Films: From Biosensors to Nanocatalysts
Multilayer Polyelectrolyte Assembly in Feedback Active Coatings and Films

List of Contributors

Rigoberto C. Advincula

University of Houston

Departments of Chemistry and Chemical and Biomolecular Engineering

136 Fleming Building

Houston, TX 77204-5003

USA

Hioharu Ajiro

Osaka University

Department of Applied Chemistry

2-1 Yamada-oka

Suita, Osaka 565-0871

Japan

Mitsuro Akashi

Osaka University

Department of Applied Chemistry

2-1 Yamada-oka

Suita, Osaka 565-0871

Japan

Maria N. Antipina

Agency for Science, Technology and Research (A*STAR)

Institute of Materials Research and Engineering

3 Research Link

Singapore 117602

Singapore

Jun-ichi Anzai

Tohoku University

Graduate School of Pharmaceutical Sciences

Aramaki, Aoba-ku

Sendai 980-8578

Japan

Pedro H.B. Aoki

Universidade Estadual Paulista (UNESP)

Faculdade de Ciências e Tecnologia

19060-900 Presidente Prudente, SP

Brazil

Katsuhiko Ariga

National Institute for Materials Science (NIMS)

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)

1-1 Namiki

Tsukuba 305-0044

Japan

and

JST

CREST

1-1 Namiki

Tsukuba 305-0044

Japan

Jianhao Bai

National University of Singapore

Division of Bioengineering

Singapore 117576

Singapore

Vincent Ball

Centre de Recherche Public Henri Tudor

Department of Advanced Materials and Structures

66 rue de Luxembourg

4002 Esch-sur-Alzette

Luxembourg

Sebastian Beyer

National University of Singapore

Division of Bioengineering

Singapore 117576

Singapore

and

National University of Singapore

Graduate School for Integrative Sciences and Engineering

Singapore 11756

Singapore

Stephan Block

Ernst-Moritz-Arndt Universität

Institut für Physik

Felix-Hausdorff-Str. 6

17487 Greifswald

Germany

Thomas Boudou

Grenoble Institute of Technology and Centre National de la Recherche Scientifique

CNRS UMR 5628, LMGP, MINATEC

3 Parvis Louis Néel

38016 Grenoble

France

Merlin L. Bruening

Michigan State University

Department of Chemistry

East Lansing, MI 48824

USA

Cédric C. Buron

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Ernesto J. Calvo

Universidad de Buenos Aires

Departamento de Química Inorgánica

Electrochemistry Group, INQUIMAE

Pabellón 2, Ciudad Universitária

Buenos Aires 1428

Argentina

Frank Caruso

The University of Melbourne

Department of Chemical and Biomolecular Engineering

Building 173

Melbourne, Victoria 3010

Australia

Chloe Chevigny

TU Berlin

Department of Chemistry

Straße des 17. Juni 124

10623 Berlin

Germany

Robert E. Cohen

Massachusetts Institute of Technology

Departments of Materials Science and Engineering and Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Carlos J.L. Constantino

Universidade Estadual Paulista (UNESP)

Faculdade de Ciências e Tecnologia

19060-900 Presidente Prudente, SP

Brazil

Cornelia Cramer

University of Münster

Institute of Physical Chemistry

Corrensstr. 28/30

48149 Münster

Germany

Thomas Crouzier

Grenoble Institute of Technology and Centre National de la Recherche Scientifique

CNRS UMR 5628, LMGP, MINATEC

3 Parvis Louis Néel

38016 Grenoble

France

Yue Cui

Chinese Academy of Sciences

Institute of Chemistry

Beijing National Laboratory for Molecular Sciences (BNLMS)

Zhongguancun North First Street 2

Beijing 100190

China

Chalongrat Daengngam

Virginia Polytechnic Institute and State University

Department of Physics

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Bruno G. De Geest

Ghent University

Department of Pharmaceutics

Harelbekestraat 72

9000 Ghent

Belgium

Sophie Demoustier-Champagne

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Stefaan C. De Smedt

Ghent University

Department of Pharmaceutics

Harelbekestraat 72

9000 Ghent

Belgium

Wang Dong

Virginia Polytechnic Institute and State University

Department of Physics

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Ashraf El-Hashani

University of Cologne

Department of Chemistry

Luxemburger Str. 116

50939 Köln

Germany

Nicel Estillore

University of Houston

Departments of Chemistry and Chemical and Biomolecular Engineering

136 Fleming Building

Houston, TX 77204-5003

USA

Jinbo Fei

Chinese Academy of Sciences

Institute of Chemistry

Beijing National Laboratory for Molecular Sciences (BNLMS)

Zhongguancun North First Street 2

Beijing 100190

China

Andreas Fery

University of Bayreuth

Department of Physical Chemistry II

95440 Bayreuth

Germany

Karine Glinel

Université de Rouen, CNRS

Laboratoire Polymères, Biopolymères, Surfaces

Bd M. de Broglie

7681 Mont Saint Aignan

France

and

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Jaime C. Grunlan

Texas A&M University

Department of Mechanical Engineering

College Station, TX 77843-3123

USA

Aurélie Guyomard

Université de Rouen, CNRS

Laboratoire Polymères, Biopolymères, Surfaces

Bd M. de Broglie

7681 Mont Saint Aignan

France

Lara Halaoui

American University of Beirut

Department of Chemistry

Beirut

Lebanon

Paula T. Hammond

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Qiang He

Harbin Institute of Technology

Micro/Nano Technology Research Centre

Harbin 150080

China

Randy Heflin

Virginia Polytechnic Institute and State University

Department of Physics

Robeson Hall (0435)

Blacksburg, VA 24061-0435

USA

Christiane A. Helm

Ernst-Moritz-Arndt Universität

Institut für Physik

Felix-Hausdorff-Str. 6

17487 Greifswald

Germany

Jonathan P. Hill

National Institute for Materials Science (NIMS)

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)

1-1 Namiki

Tsukuba 305-0044

Japan

and

JST

CREST

1-1 Namiki

Tsukuba 305-0044

Japan

Kristina Hoffmann

University of Cologne

Department of Chemistry

Luxemburger Str. 116

50939 Köln

Germany

Jurriaan Huskens

University of Twente

MESA+ Institute for Nanotechnology

Molecular Nanofabrication Group

7500 AE Enschede

The Netherlands

Md Nasim Hyder

Massachusetts Institute of Technology

Department of Chemical Engineering

77 Massachusetts Avenue

Cambridge, MA 02139

USA

Qingmin Ji

National Institute for Materials Science (NIMS)

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)

1-1 Namiki

Tsukuba 305-0044

Japan

Chaoyang Jiang

University of South Dakota

Chemistry Department

414 East Clark Street

Vermillion, SD 57069

USA

Alain M. Jonas

Université Catholique de Louvain

Institute of Condensed Matter and Nanosciences – Bio & Soft Matter

Croix du Sud 1

1348 Louvain-la-Neuve

Belgium

Jouko Kankare

University of Turku

Department of Chemistry

Laboratory of Materials Chemistry and Chemical Analysis

20014 Turku

Finland

Toshiyuki Kida

Osaka University

Department of Applied Chemistry

2-1 Yamada-oka

Suita, Osaka 565-0871

Japan

Maxim V. Kiryukhin

Agency for Science,...

Erscheint lt. Verlag 7.5.2012
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Technik Maschinenbau
Schlagworte anyone • Assembly • Beschichtung • bio • Book • Chemie • Chemistry • components • Comprehensive • Dünne Schicht • Dünne Schichten, Oberflächen u. Grenzflächen • Dünne Schicht • Dünne Schichten, Oberflächen u. Grenzflächen • Edition • Essential • FI • fi eld • Field • Herein • hybrid • layerbylayer • LMS • Materials • Materials Science • Materialwissenschaften • Nanomaterialien • nanomaterials • nanoscale • Nanotechnologie • nanotechnology • Physical Chemistry • Physikalische Chemie • Polymer Science & Technology • Polymersynthese • polymer synthesis • Polymerwissenschaft u. -technologie • provided • Researchers • result • scientists • selfassembly • Summary • Surfaces • Thin Films, Surfaces & Interfaces • two • Volumes
ISBN-10 3-527-64676-0 / 3527646760
ISBN-13 978-3-527-64676-0 / 9783527646760
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Gefüge von Metallen, Keramiken und Verbunden

von Heinrich Oettel; Gaby Ketzer-Raichle

eBook Download (2024)
Wiley-VCH (Verlag)
CHF 95,70