Glial Physiology and Pathophysiology (eBook)
John Wiley & Sons (Verlag)
978-1-118-40203-0 (ISBN)
Coverae includes:
- the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems
- the cellular physiology of the different kinds of glial cells
- the mechanisms of intra- and inter-cellular signalling in glial networks
- the mechanisms of glial-neuronal communications
- the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system
- the cellular and molecular mechanisms of metabolic neuronal-glial interactions
- the role of glia in nervous system pathology, including pathology of glial cells and associated diseases - for example, multiple sclerosis, Alzheimer's, Alexander disease and Parkinson's
- An up-to-date and fully referenced text on the most numerous cells in the human brain
- Detailed coverage of the morphology and interrelationships between glial cells and neurones in different parts of the nervous system
- Describes the role og glial cells in neuropathology
- Focus boxes highlight key points and summarise important facts
- Companion website with downloadable figures and slides
Alexei Verkhratsky is Professor of Neurophysiology and Chairman of the Division of Neuroscience at the University of Manchester, UK.
Arthur Butt is Professor of Cellular Neurophysiology, Department of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells.Coverae includes: the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems the cellular physiology of the different kinds of glial cells the mechanisms of intra- and inter-cellular signalling in glial networks the mechanisms of glial-neuronal communications the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system the cellular and molecular mechanisms of metabolic neuronal-glial interactions the role of glia in nervous system pathology, including pathology of glial cells and associated diseases - for example, multiple sclerosis, Alzheimer's, Alexander disease and Parkinson's Neuroglia oversee the birth and development of neurones, the establishment of interneuronal connections (the 'connectome'), the maintenance and removal of these inter-neuronal connections, writing of the nervous system components, adult neurogenesis, the energetics of nervous tissue, metabolism of neurotransmitters, regulation of ion composition of the interstitial space and many, many more homeostatic functions. This book primes the reader towards the notion that nervous tissue is not divided into more important and less important cells. The nervous tissue functions because of the coherent and concerted action of many different cell types, each contributing to an ultimate output. This reaches its zenith in humans, with the creation of thoughts, underlying acquisition of knowledge, its analysis and synthesis, and contemplating the Universe and our place in it. An up-to-date and fully referenced text on the most numerous cells in the human brain Detailed coverage of the morphology and interrelationships between glial cells and neurones in different parts of the nervous system Describes the role og glial cells in neuropathology Focus boxes highlight key points and summarise important facts Companion website with downloadable figures and slides
Alexei Verkhratsky is Professor of Neurophysiology and Chairman of the Division of Neuroscience at the University of Manchester, UK. Arthur Butt is Professor of Cellular Neurophysiology, Department of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
Glial Physiology and Pathophysiology 1
Contents 9
Preface 19
About the Authors 23
Abbreviations 27
About the Companion Website 34
1 History of Neuroscience and the Dawn of Research in Neuroglia 35
1.1 The miraculous human brain: localising the brain functions 35
1.2 Cellular organisation of the brain 44
1.3 Mechanisms of communications in neural networks 48
1.3.1 Electrical/ionic nature of excitability 48
1.3.2 Chemical signalling between neural cells 60
1.4 The concept of neuroglia 61
1.5 Beginning of the modern era 81
1.6 Concluding remarks 83
References 83
2 General Overview of Signalling in the Nervous System 93
2.1 Intercellular signalling: wiring and volume modes of transmission 93
2.2 Cellular signalling: receptors 96
2.3 Intracellular signalling: second messengers 101
2.4 Calcium signalling 101
2.4.1 Cellular Ca2+ regulation 103
2.5 Concluding remarks 106
3 Neuroglia: Definition, Classification, Evolution, Numbers, Development 107
3.1 Definition of neuroglia as homeostatic cells of the nervous system 108
3.2 Classification 109
3.3 Evolution of neuroglia 110
3.3.1 Evolution of astrocytes 113
(i) Nematoda: neuroglia in Caenorhabditis elegans 113
(ii) Annelida: astroglia in leech 115
(iii) Arthropoda: astrocytes in Drosophila and other insects 117
(iv) Neuroglia in early Deuterostomia (Hemichordata and Echinodermata) 119
(v) Neuroglia in low vertebrates 119
(vi) Glial advance in higher vertebrates 120
3.3.2 Evolution of myelination 123
3.3.3 Evolution of microglia 126
3.4 Numbers: how many glial cells are in the brain? 127
3.5 Embryogenesis and development of neuroglia in mammals 130
3.5.1 Macroglial cells 130
3.5.2 Astroglial cells are brain stem cells 132
3.5.3 Peripheral glia and schwann cell lineage 132
3.5.4 Microglial cell lineage 133
3.6 Concluding remarks 133
References 134
4 Astroglia 139
4.1 Definition and heterogeneity 141
4.2 Morphology of the main types of astroglia 147
4.3 How to identify astrocytes in the nervous tissue 153
4.4 Astroglial syncytial networks 154
4.4.1 Gap junctions, connexons and connexins 154
4.4.2 Astroglial networks 157
4.5 Physiology of astroglia 159
4.5.1 Membrane potential and ion distribution 159
4.5.2 Ion channels 160
(i) Potassium channels 160
(ii) Voltage-operated sodium channels (Nav) 164
(iii) Calcium channels 165
(iv) Transient receptor potential or TRP channels 165
(v) Anion/chloride channels 165
(vi) Aquaporins 166
4.5.3 Receptors to neurotransmitters and neuromodulators 167
(i) Glutamate receptors 171
(ii) Purinoceptors 175
(iii) ?-aminobutiric acid receptors (GABA) receptors 180
(iv) Glycine receptors 182
(v) Acetylcholine receptors 182
(vi) Adrenergic receptors 182
(vii) Serotonin receptors 183
(viii) Histamine receptors 183
(ix) Cannabinoid receptors 183
(x) Neuropeptide receptors 183
(xi) Cytokine and chemokine receptors 184
(xii) Complement receptors 185
(xiii) Platelet-activating factor receptors 185
(xiv) Thrombin receptors 185
(xv) Ephrin receptors 185
(xvi) Succinate receptors 186
4.5.4 Astroglial membrane transporters 186
(i) ATP-dependent transporters 187
(ii) Secondary transporters 188
4.5.5 Calcium signalling in astroglia 190
(i) Endoplasmic reticulum provides for Ca2+ excitability of astrocytes 190
(ii) Store-operated Ca2+ entry in astrocytes 192
(iii) Ionotropic Ca2+ permeable receptors in astrocytes 192
(iv) Sodium/calcium exchanger in astroglial Ca2+ signalling 193
(v) Mitochondria in astroglial Ca2+ signalling 193
(vi) Calcium waves in astrocytes 193
4.5.6 Sodium signalling in astrocytes 198
4.5.7 Release of neurotransmitters and neuromodulators from astroglia 199
(i) Exocytotic release of neurotransmitters from astrocytes 201
(ii) Diffusional release of neurotransmitters from astrocytes 206
(iii) Transporter-mediated neurotransmitter release from astrocytes 207
(iv) Astrocytes as a main source of adenosine in the CNS 208
(v) Physiological role of astroglial release of neurotransmitters 208
4.6 Functions of astroglia 209
4.6.1 Developmental function: neurogenesis and gliogenesis 210
(i) Embryonic neurogenesis and gliogenesis 210
(ii) Neurogenesis and gliogenesis in the adult brain 212
4.6.2 Neuronal guidance 213
4.6.3 Regulation of synaptogenesis and control of synaptic maintenance and elimination 216
4.6.4 Structural function: astrocytes define the micro-architecture of the grey matter and create neurovascular units 219
4.6.5 Structural function: astrocytes and the brain-blood barrier 220
4.6.6 Astrocytes regulate brain microcirculation 226
4.6.7 Brain energetics and neuronal metabolic support 229
4.6.8 Astroglia and neuroimaging 234
4.6.9 Ion homeostasis in the extracellular space 234
(i) Astrocytes and extracellular potassium homeostasis 234
(ii) Astrocytes and chloride homeostasis 238
(iii) Astrocytes and extracellular Ca2+ 238
(iv) Astrocytes and regulation of pH 239
(v) Astrocytes and zinc homeostasis 240
4.6.10 Astrocytes and homeostasis of reactive oxygen species 240
4.6.11 Water homeostasis and regulation of the extracellular space volume 241
(i) Regulation of water homeostasis 241
(ii) Regulatory volume decrease in astrocytes 242
(iii) Redistribution of water during neuronal activity and dynamic regulation of the extracellular space 242
4.6.12 Neurotransmitters homeostasis 243
(i) Astroglia control glutamate homeostasis and glutamatergic transmission in the CNS 243
(ii) Astroglia and GABA-ergic transmission 247
(iii) Astroglia and adenosine homeostasis 248
4.6.13 Astroglia in synaptic transmission 249
(i) The astroglial synaptic compartment: concept of the tripartite synapse 249
(ii) The astroglial synaptic compartment: concept of the astroglial cradle 253
(iii) Morphological plasticity of the astroglial synaptic compartment 255
(iv) What is the role of astroglia in regulation of synaptic transmission? 256
4.6.14 Astroglia and central chemoception of pH and CO2 258
4.6.15 Astrocytes in regulation of systemic sodium homeostasis 258
4.6.16 Astroglia and glucose sensing 259
4.6.17 Astroglia and circadian rhythms 260
4.6.18 Astroglia and sleep 261
4.6.19 Astroglia and control of reproduction 262
4.6.20 Müller glial cells as light guides in retina 262
4.6.21 Astroglia in ageing 262
4.6.22 Astrocytes as a cellular substrate of memory and consciousness? 264
4.7 Concluding remarks 265
References 265
5 Oligodendrocytes 279
5.1 Oligodendrocyte anatomy 281
5.1.1 The generalised structure of a myelinating oligodendrocyte 281
5.1.2 Subtypes of myelinating oligodendrocytes 283
5.1.3 Non-myelinating oligodendrocytes 285
5.2 Myelin structure and function 286
5.2.1 Myelin and saltatory conduction 286
5.2.2 Oligodendrocyte-axon interactions and nodes of Ranvier 290
5.2.3 Myelin structure and metabolism 291
5.2.4 Myelin biochemistry 292
(i) Lipids 292
(ii) Proteins 295
5.2.5 Myelin transport 299
5.3 Physiology of oligodendrocytes 300
5.3.1 Voltage-operated ion channels 304
(i) Outwardly rectifying potassium channels 304
(ii) Inward rectifier potassium channels (Kir) 305
(iii) Voltage-operated sodium channels (Nav) 306
(iv) Voltage-operated calcium channels (VOCC, Cav) 306
(v) Chloride and acid-sensing ion channels (ASIC) 307
5.3.2 Glutamate receptors 307
(i) Ionotropic glutamate receptors (iGluRs) 307
(ii) Metabotropic glutamate receptors (mGluRs) 309
5.3.3 Purinergic receptors 309
(i) P1 purinergic receptors 309
(ii) P2X receptors 310
(iii) P2Y receptors 310
5.3.4 GABA receptors 311
5.3.5 Other neurotransmitter receptors 312
5.3.6 Transporters and exchangers 313
5.3.7 Gap junctions 313
5.3.8 Intracellular calcium 314
5.4 Oligodendrocyte development 317
5.4.1 Developmental origins of oligodendrocytes 318
5.4.2 Stages of oligodendrocyte differentiation 318
5.4.3 Trophic factors and oligodendrocyte differentiation 320
5.4.4 Regulation of oligodendrocyte differentiation 322
5.4.5 Axoglial interactions regulating oligodendrocyte differentiation and myelination 327
5.4.6 Downstream signalling cascades that regulate oligodendrocyte differentiation and myelination 331
5.5 Concluding remarks 333
References 333
6 NG2-glial Cells 355
6.1 Definition of NG2-glia 355
6.2 Structure of NG2-glia 358
6.2.1 Identification 358
6.2.2 Morphology and distribution 359
6.2.3 Relationship of NG2-glia with neuroglial domains 360
6.2.4 NG2-glia and synapses 360
6.3 Physiology of NG2-glia 361
6.3.1 Membrane properties 362
6.3.2 Gap junctional coupling 362
6.3.3 Voltage-operated ion channels 364
6.3.4 Neurotransmitter receptors 364
6.3.5 Neurone-NG2-glial cell signalling at synapses 365
6.4 Proliferation of NG2-glia and generation of oligodendrocytes 366
6.4.1 Normal adult brain 366
6.4.2 Are NG2-glia multipotent stem cells? 367
6.4.3 Response of NG2-glia to injury and demyelination 367
6.5 Relationship between NG2-glia and CNS pericytes 367
6.5.1 Identification of pericytes 367
6.5.2 Developmental origin of pericytes 368
6.5.3 Pericytes are multipotent stem cells in the adult brain 370
6.6 Evolution of NG2-glia 370
6.7 Concluding remarks 371
References 371
7 Microglia 377
7.1 Definition of microglia 378
7.2 Microglial origin and development 379
7.3 Morphology of microglia 379
7.3.1 Morphology in the healthy tissue: resting or survelliant phenotype 379
7.3.2 Morphology in pathological tissue: activated phenotype 383
7.3.3 Morphology in the dish 384
7.3.4 Identification of microglial cells in neural tissues 385
7.4 General physiology of microglia 385
7.4.1 Membrane potential and ion distribution 385
7.4.2 Ion channels in microglia 386
(i) Sodium channels 386
(ii) Calcium-permeable channels 386
(iii) Potassium channels 391
(iv) Anion channels 392
(v) Proton channels 392
7.4.3 Calcium signalling in microglia 392
7.4.4 Neurotransmitter receptors 394
(i) Purinoceptors 394
(ii) Glutamate receptors 397
(iii) GABA receptors 397
(iv) Acetylcholine receptors 398
(v) Adrenergic receptors 398
(vi) Dopamine receptors 398
(vii) Serotonin receptors 398
7.4.5 Receptors for neurohormones and neuromodulators 398
7.4.6 Cytokines and chemokines receptors 401
7.4.7 Pattern-recognition receptors 403
7.4.8 Other receptor systems 404
7.4.9 Microglial plasmalemmal transporters 405
7.5 Microglial migration and motility 406
7.6 Physiological functions of microglia: role in synaptic transmission and plasticity 407
7.7 Microglia in ageing 409
7.8 Concluding remarks 409
References 410
8 Peripheral Glial Cells 415
8.1 Peripheral nervous system 416
8.1.1 Basic structure 416
8.1.2 Development 419
8.1.3 The CNS-PNS interface 421
(i) Structure of the CNS-PNS interface 421
(ii) Development of the CNS-PNS interface 423
(iii) CNS-PNS interface in degeneration and regeneration 424
8.2 Schwann cells 424
8.2.1 Schwann cell subtypes 425
8.2.2 Development of Schwann cells 428
(i) Stages of Schwann cell differentiation 428
(ii) Regulation of Schwann cell differentiation 430
(iii) Control of myelination 431
8.2.3 Axoglial interactions and myelination 431
(i) The Schwann cell basal lamina 433
(ii) Organisation of nodes of Ranvier in the PNS 433
(iii) Schwann cell perinodal microvilli 433
8.2.4 PNS myelin structure and biochemistry 434
(i) Lipids 435
(ii) Proteins 435
8.2.5 Physiology of Schwann Cells 437
(i) Ion channels and neurotransmitter receptors 437
(ii) Ca2+ signalling in Schwann cells 440
(iii) Schwann cells and pain 441
8.3 Satellite glial cells 441
8.3.1 Organisation of sensory and autonomic ganglia 441
8.3.2 Satellite glia in sensory and autonomic ganglia 442
8.3.3 Physiology of satellite glia 442
(i) Electrical properties 442
(ii) Homeostatic function 443
(iii) Ca2+ signalling 443
(iv) Other receptors in SGCs 443
(v) Neurotrophic function of SGC 443
8.3.4 Injury response of satellite glia 444
8.3.5 Sensory satellite glia and pain 445
8.4 Enteric glia 446
8.4.1 Organisation of the enteric nervous system 446
8.4.2 Development of enteric glia 447
8.4.3 Structure of enteric glia 447
8.4.4 Physiology of enteric glia 449
(i) Electrical properties 449
(ii) Ion channels and neurotransmitter receptors 449
(iii) Ca2+ signalling 450
8.4.5 Functions of EGCs 450
(i) Homeostatic functions 450
(ii) Barrier function 451
(iii) Immune functions 452
(iv) Enteric glia in intestinal diseases 452
8.5 Olfactory ensheathing cells (OECs) 452
8.5.1 Organisation and structure of OECs 452
8.5.2 Physiology of OECs 453
(i) Electrical properties 453
(ii) Ca2+ signalling 454
8.5.3 OECs facilitate olfactory neurogenesis throughout life 454
8.5.4 OECs and regeneration 455
8.5.5 OECs and remyelination 456
8.6 Concluding remarks 456
References 457
9 General Pathophysiology of Neuroglia 465
9.1 Neurological disorders as gliopathologies 465
9.2 Reactive astrogliosis 467
9.3 Wallerian degeneration 473
9.4 Excitotoxic vulnerability of oligodendrocytes: the death of white matter 476
9.5 Activation of microglia 478
9.5.1 Pathological potential of activated microglia 483
9.6 Concluding remarks 483
References 484
10 Neuroglia in Neurological Diseases 487
10.1 Introduction 488
10.2 Genetic astrogliopathology: Alexander disease 490
10.3 Stroke and ischaemia 492
10.3.1 Glial cell death during ischaemia 494
10.3.2 Astroglia protect the brain against ischaemia 497
10.3.3 Astrocytes may exacerbate brain damage in ischaemia 499
10.3.4 Oligodendrocytes and microglia in stroke 501
10.4 Migraine and spreading depression 501
10.5 CNS oedema 503
10.5.1 Traumatic oedema 504
10.5.2 Ischaemic oedema 504
10.5.3 Oedema in hepatic encephalopathy 505
10.5.4 Hyponatremia 505
10.6 Metabolic disorders 505
10.6.1 Hepatic encephalopathy 505
10.6.2 Congenital glutamine deficiency with glutamine synthetase mutations 506
10.6.3 Pyruvate carboxylase deficiency 506
10.6.4 Niemann-pick type C disease 507
10.6.5 Aceruloplasminemia 507
10.7 Toxic encephalopathies 507
10.7.1 Methylmercury toxic encephalopathy 507
10.7.2 Lead toxic encephalopathy 508
10.7.3 Manganese neurotoxicity 508
10.7.4 Aluminium toxic encephalopathy 508
10.8 Neurodegenerative diseases 508
10.8.1 Post-stroke dementia 509
10.8.2 Amyotrophic lateral sclerosis 511
10.8.3 Wernicke encephalopathy 513
10.8.4 Fronto-temporal, thalamic, HIV-associated and other non-Alzheimer’s type dementias 513
10.8.5 Alzheimer’s disease (AD) 514
(i) Astrogliosis and astroglial degeneration in AD 516
(ii) Astroglia and ?-amyloid 517
(iii) The neuro-vascular unit in AD: role for astrocytes 517
(iv) Metabolic remodelling of astroglia in AD 518
(v) Microglia in AD 518
10.8.6 Parkinson’s disease 519
10.8.7 Huntington’s disease 520
10.8.8 Infantile neuroaxonal dystrophy 520
10.8.9 Nasu-Hakola disease: microglial pre-senile dementia 520
10.9 Leukodystrophies 521
10.9.1 Megalencephalic leukoencephalopathy with subcortical cysts 521
10.9.2 Vanishing white matter disease 521
10.10 Epilepsy 522
10.11 Psychiatric diseases 524
10.12 Autistic disorders 525
10.12.1 Autism 525
10.12.2 Fragile X syndrome 525
10.12.3 Rett syndrome 525
10.13 Neuropathic pain 526
10.14 Demyelinating diseases 528
10.14.1 Multiple sclerosis 528
10.14.2 Neuromyelitis optica 530
10.15 Infectious diseases 530
10.15.1 Bacterial and viral infections 530
10.15.2 Human immunodeficiency virus (HIV) infection 531
10.15.3 Human T-lymphotropic virus type-1 532
10.15.4 Human herpes virus-6 533
10.16 Peripheral neuropathies 533
10.16.1 Hereditary neuropathies 533
10.16.2 Acquired inflammatory neuropathies 534
10.16.3 Diabetic neuropathies 534
10.16.4 Leprosy 535
10.17 Gliomas 535
10.17.1 Glial complications of glioma therapy 538
10.18 Concluding remarks 538
References 538
Author Index 547
Subject Index 551
| Erscheint lt. Verlag | 31.1.2013 |
|---|---|
| Sprache | englisch |
| Themenwelt | Medizin / Pharmazie |
| Naturwissenschaften ► Biologie ► Humanbiologie | |
| Naturwissenschaften ► Biologie ► Zoologie | |
| Schlagworte | Alexander • between glial • Biowissenschaften • Birth • Cell Biology • Cells • cellular • connectome • Different • Establishment • Example • Glia • glial • Life Sciences • mechanisms • metabolic • molecular • Nervous • Neuroglia • neuronal • neuronalglial • Neurones • Neurophysiologie • Neurophysiology • Neuroscience • Neurowissenschaften • Parkinsons • Pathology • Role • Zellbiologie |
| ISBN-10 | 1-118-40203-0 / 1118402030 |
| ISBN-13 | 978-1-118-40203-0 / 9781118402030 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich