Dynamics Reported
Springer Berlin (Verlag)
978-3-642-79933-4 (ISBN)
Hyperbolicity and Exponential Dichotomy for Dynamical Systems.- 1. Introduction.- 2. The Main Lemma.- 3. The Linearization Theorem of Hartman and Grobman.- 4. Hyperbolic Invariant Sets: e-orbits and Stable Manifolds.- 5. Structural Stability of Anosov Diffeomorphisms.- 6. Periodic Points of Anosov Diffeomorphisms.- 7. Axiom A Diffeomorphisms: Spectral Decomposition.- 8. The In-Phase Theorem.- 9. Flows.- 10. Proof of Lemma 1.- References.- Feedback Stabilizability of Time-Periodic ParabolicEquations.- 0. Introduction.- I. Linear Periodic Evolution Equations.- II. Controllability, Observability and Feedback Stabilizability.- III. Applications to Second Order Time-Periodic Parabolic Initial-Boundary Value Problems.- References.- Homoclinic Bifurcations with Weakly Expanding Center.- 1. Introduction.- 2. Hypotheses, a Reduction Principle and Basic Existence Theorems.- 3. Preliminaries.- 4. Proof of the Main Results in 2.- 5. Simple Periodic Solutions.- 6. Bifurcations of Homoclinic Solutions with One-Dimensional Local Center Manifolds.- 7. Estimates Related to a Nondegenerate Hopf Bifurcation.- 8. Interaction of Homoclinic Bifurcation and Hopf Bifurcation.- 9. The Disappearance of Periodic and Aperiodic Solutions when ?2 Passes Through Turning Points.- References.- Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation: A Geometric Singular Perturbation Study.- 1. Introduction.- 2. Geometric Structure and Dynamics of the Unperturbed System.- 3. Geometric Structure and Dynamics of the Perturbed System.- 4. Fiber Representations of Stable and Unstable Manifolds.- 5. Orbits Homoclinic to qEUR.- 6. Numerical Study of Orbits Homoclinic to qEUR.- 7. The Dynamical Consequences of Orbits Homoclinic to qEUR: The Existence and Nature of Chaos.- 8. Conclusion.-References.
| Erscheint lt. Verlag | 14.12.2011 |
|---|---|
| Reihe/Serie | Dynamics Reported. New Series |
| Co-Autor | N. Fenichel, P. Koch Medina, D.W. McLaughlin, X. Lin, E.A.II Overman, S. Wiggins, C. Xiong |
| Zusatzinfo | IX, 289 p. |
| Verlagsort | Berlin |
| Sprache | englisch |
| Maße | 155 x 235 mm |
| Gewicht | 463 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
| Naturwissenschaften ► Physik / Astronomie | |
| Schlagworte | Analysis • Bifurcation • Bifurcations • Bifurkation • Boundary value problem • Chaos • diffeomorphism • Dynamical system • Dynamical Systems • eigenvalue • hyperbolic system • Hyperbolic systems • hyperbolische Systeme • Interpolation • Invariant • manifold • Operator • perturbation theory • Solution • Spectral Theorem • Stabilität • stability • Störungsrechnung |
| ISBN-10 | 3-642-79933-7 / 3642799337 |
| ISBN-13 | 978-3-642-79933-4 / 9783642799334 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich