Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Vortices in the Magnetic Ginzburg-Landau Model -  Etienne Sandier,  Sylvia Serfaty

Vortices in the Magnetic Ginzburg-Landau Model (eBook)

eBook Download: PDF
2008 | 1. Auflage
326 Seiten
Birkhauser Boston (Verlag)
978-0-8176-4550-2 (ISBN)
Systemvoraussetzungen
103,52 inkl. MwSt
(CHF 99,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
With the discovery of type-II superconductivity by Abrikosov, the prediction of vortex lattices, and their experimental observation, quantized vortices have become a central object of study in superconductivity, superfluidity, and Bose--Einstein condensation. This book presents the mathematics of superconducting vortices in the framework of the acclaimed two-dimensional Ginzburg-Landau model, with or without magnetic field, and in the limit of a large Ginzburg-Landau parameter, kappa. This text presents complete and mathematically rigorous versions of both results either already known by physicists or applied mathematicians, or entirely new. It begins by introducing mathematical tools such as the vortex balls construction and Jacobian estimates. Among the applications presented are: the determination of the vortex densities and vortex locations for energy minimizers in a wide range of regimes of applied fields, the precise expansion of the so-called first critical field in a bounded domain, the existence of branches of solutions with given numbers of vortices, and the derivation of a criticality condition for vortex densities of non-minimizing solutions. Thus, this book retraces in an almost entirely self-contained way many results that are scattered in series of articles, while containing a number of previously unpublished results as well. The book also provides a list of open problems and a guide to the increasingly diverse mathematical literature on Ginzburg--Landau related topics. It will benefit both pure and applied mathematicians, physicists, and graduate students having either an introductory or an advanced knowledge of the subject.
More than ten years have passed since the book of F. Bethuel, H. Brezis and F. H' elein, which contributed largely to turning Ginzburg-Landau equations from a renowned physics model into a large PDE research ?eld, with an ever-increasing number of papers and research directions (the number of published mathematics papers on the subject is certainly in the several hundreds, and that of physics papers in the thousands). Having ourselves written a series of rather long and intricately - terdependent papers, and having taught several graduate courses and mini-courses on the subject, we felt the need for a more uni?ed and self-contained presentation. The opportunity came at the timely moment when Ha* ?m Brezis s- gested we should write this book. We would like to express our gratitude towards him for this suggestion and for encouraging us all along the way. As our writing progressed, we felt the need to simplify some proofs, improvesomeresults,aswellaspursuequestionsthatarosenaturallybut that we had not previously addressed. We hope that we have achieved a little bit of the original goal: to give a uni?ed presentation of our work with a mixture of both old and new results, and provide a source of reference for researchers and students in the ?eld.
Erscheint lt. Verlag 14.5.2008
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie
Technik
ISBN-10 0-8176-4550-0 / 0817645500
ISBN-13 978-0-8176-4550-2 / 9780817645502
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich