Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Wind Energy Conversion Systems (eBook)

Technology and Trends

S.M. Muyeen (Herausgeber)

eBook Download: PDF
2012 | 2012
XXVI, 526 Seiten
Springer London (Verlag)
978-1-4471-2201-2 (ISBN)

Lese- und Medienproben

Wind Energy Conversion Systems -
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators.

Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride through and frequency fluctuation mitigation using energy storage options are also covered. Efficiency analyses are presented for different types of commercially available wind turbine generator systems, large scale wind generators using superconducting material, and the integration of offshore wind and marine current farms.

Each chapter is written by a leader in the wind energy arena, making Wind Energy Conversion System a valuable reference for researchers and students of wind energy.


Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride through and frequency fluctuation mitigation using energy storage options are also covered. Efficiency analyses are presented for different types of commercially available wind turbine generator systems, large scale wind generators using superconducting material, and the integration of offshore wind and marine current farms.Each chapter is written by a leader in the wind energy arena, making Wind Energy Conversion System a valuable reference for researchers and students of wind energy.

Preface 6
Acknowledgments 7
Contents 8
Contributors 11
1 Introduction 23
Abstract 23
1.1…Global Wind Power Scenario 23
1.1.1 Asia 24
1.1.2 North America 24
1.1.3 Europe 27
1.1.4 Latin America 29
1.1.5 Pacific Region 29
1.1.6 Africa and Middle East 30
1.2…Market Forecast 30
1.3…Technological Aspects---Present and Future 32
1.3.1 Wind Turbine Generator Unit 34
1.3.2 Power Electronic Converter Technology 34
1.3.3 Offshore Wind Farm 35
1.3.4 Operation and Maintenance 35
1.3.5 Moderate and Bulk Power Transmission 37
1.3.6 Variability and Predictability 38
1.3.7 Energy Storage Option 38
1.3.8 Grid Code 39
1.4…Wind Power Explained in this Book 39
1.5…Conclusions 44
References 44
Part I Wind Energy Conversion Systems 45
2 Calculation Method of Losses and Efficiency of Wind Generators 46
Abstract 46
2.1…Introduction 46
2.2…Calculation Method for Squirrel-Cage Induction Generator 48
2.2.1 Outline of the Calculation Method 48
2.2.2 Models and Equations Necessary in the Calculations 49
2.2.2.1 Wind Turbine Power 49
2.2.2.2 Several Losses in the Generator System 50
2.2.2.3 Calculation Method 51
2.2.3 Calculated Results 54
2.3…Calculation Method for Permanent Magnet Synchronous Generator 54
2.3.1 System Configuration 54
2.3.2 Models and Equations Necessary in the Calculations 56
2.3.2.1 Several Losses in the Generator System 56
2.3.2.2 Calculation Method 60
2.3.3 Calculated Results 62
2.4…Calculation Method for Doubly-Fed Induction Generator 63
2.4.1 System Configuration 63
2.4.2 Models and Equations Necessary in the Calculations 63
2.4.2.1 Several Losses in the Generator System 63
2.4.2.2 Calculation Method and Results 67
2.5…Comparative Study About Capacity Factor Among Three WGs (IG, PMSG and DFIG) 69
2.5.1 Weibull Distribution Function 69
2.5.2 Calculated Results of Capacity Factor 70
2.6…Conclusions 71
References 71
3 Superconducting Direct Drive Wind Turbine Generators: Advantages and Challenges 73
Abstract 73
3.1…Introduction 73
3.2…Upscaling Offshore Turbines 74
3.3…Drive Trains 76
3.4…Generator Types 78
3.5…First Generation: Copper and Steel 78
3.5.1 Ohm’s Law and Heat Generation 79
3.5.2 Magnetic Steel and Flux Circuits 80
3.6…Second Generation: Nd2Fe14B, Copper and Steel 80
3.7…Third Generation: Superconductors, Copper and Steel 83
3.7.1 Superconductivity 84
3.7.2 High Temperature Superconducting Tapes 87
3.7.3 Race Track Coils and Generator Layout 88
3.8…Advantages of a Direct Drive Superconducting Generator 91
3.9…Technical Challenges 94
3.9.1 Minimizing the Cryostat Thickness 95
3.9.2 Torque Transfer Tube 96
3.9.3 State of the Art and Alternatives 96
3.9.4 Road Map 97
3.10…Conclusion 98
Acknowledgment 99
References 99
4 Potential Applications and Impact of Most-Recent Silicon Carbide Power Electronics in Wind Turbine Systems 101
Abstract 101
4.1…Introduction to Wind Energy and Power Electronics 102
4.1.1 State-of-the-Art Power Electronics for Wind Turbine Systems 104
4.1.1.1 Introduction to Wind Energy Conversion Systems 104
4.1.1.2 Generators 105
4.1.1.3 Power Converters 105
4.1.2 SiC Power Electronics and Their Potential Applications in Wind Energy Systems 107
4.1.2.1 Present Status and Future Trends of SiC Power Devices 107
4.1.2.2 Characteristics of Present SiC Power Devices 108
4.2…Studies on a SiC Full-Scale Wind Turbine Converter 111
4.2.1 Wind Energy System Components and Modeling 112
4.2.1.1 Wind Turbine Models 113
4.2.1.2 SiC Power Device Models 116
4.2.1.3 Converter Power Loss Models and Thermal Models 118
Power Loss Models 119
Thermal Models 120
4.2.2 Simulations and Discussions 121
4.2.2.1 At Switching Frequency of 3 kHz 121
4.2.2.2 At Frequency upto 50 kHz 122
4.2.2.3 High Temperature Capability of the SiC Converter 124
4.3…Conclusions and Future work 126
References 126
5 A New Interconnecting Method for Wind Turbine/Generators in a Wind Farm 130
Abstract 130
5.1…Introduction 130
5.2…Basic Equations of the System 131
5.3…System Configuration 132
5.4…Operating Method for System Consisting of Arbitrary Number of Wind Turbine Generators 134
5.4.1 Loads Connected Through Thyristor Inverter 134
5.4.2 Resistive Load Connected in DC Link 136
5.5…Basic Characteristics for Case of Two Wind Turbine Generators 137
5.6…Dynamic Performances 142
5.6.1 Dynamic Model of the System 142
5.6.2 Control System for Constant Tip Speed Ratios 144
5.6.3 Dynamic Responses when Wind Turbines are Driven by Natural Wind 145
5.7…Dynamic Responses for More Wind Turbines (In the Case of Four Wind Turbines) 146
5.8…Conclusions 148
References 149
6 Grid Connection Scheme of a Variable Speed Wind Turbine Driven Switched Reluctance Generator 150
Abstract 150
6.1…Introduction 150
6.2…SRG Construction 152
6.3…Torque Production 152
6.3.1 Principle of Operation 152
6.3.2 Magnetization Curves 153
6.3.3 Static Torque Curves 154
6.4…Switched Reluctance Generator Converter System 156
6.5…Switched Reluctance Generator Static Characteristics 156
6.6…Methods for Representing the Magnetic Curves of SRG 157
6.7…Computation of the SRG Static Characteristics 158
6.8…Inverter Circuits of SRG 159
6.8.1 Power Inverter with Asymmetric Half Bridge 160
6.8.2 Power Inverter with Split DC Supply 161
6.8.3 Power Inverter for SRG with Bifilar Windings 161
6.9…SRG for Wind Energy Applications 162
6.9.1 Wind Turbine Modeling 163
6.9.2 SRG Modeling Include Converter 164
6.9.3 Control of Grid Side Inverter 167
6.9.4 Model System 168
6.9.5 Simulation Results 169
6.10…Conclusion 171
References 171
7 Dynamic Model and Control of a Wind-Turbine Generator 173
Abstract 173
7.1…Wind Turbine Structure 173
7.2…Wind Turbine Model 174
7.2.1 Wind Turbine Control Methods 174
7.2.2 Dynamics of the Wind Turbine with MPE Algorithm 176
7.3…Dynamics of the Generator 177
7.4…Dynamics of the Power Electronic Converter 178
7.5…Control of Wind Turbines 180
7.5.1 Yaw Control 180
7.5.2 Pitch Control 180
7.5.3 Generator Control 181
7.5.4 Power Electronic Converter Control 182
References 183
Part II Prime Issues for Wind Industry 184
8 Voltage Flicker Measurement in Wind Turbines 185
Abstract 185
8.1…Introduction 186
8.2…Test Procedure for Voltage Fluctuations in Wind Turbines 187
8.2.1 Fictitious Grid 188
8.2.2 Continuous Operation 189
8.2.3 Switching Operations 191
8.3…A System for the Measurement of the Power Quality Characteristics 192
8.3.1 Conditioning System SAC-2 193
8.3.2 Control System SARPE 2.1 195
8.3.3 Post-Processing Module for Flicker Measurement 195
8.4…Analysis of the Fictitious Grid 196
8.4.1 Calculation of {f u_0(t)} from {f u_{ 
197 
8.4.1.1 Short-Time Fourier Transform 197
8.4.1.2 Zero Crossing Detection 199
8.4.2 Calculation of {f u_0(t)} After Filtering {f u_{ 
201 
8.4.2.1 Design of a Narrow Band-Pass Filter 202
8.4.2.2 Anticausal Zero-Phase Filter Implementation 207
8.5…Results Using Real Signals 209
8.6…Conclusions 211
Acknowledgements 211
References 212
9 Grey Predictors for Hourly Wind Speed and Power Forecasting 213
Abstract 213
9.1…Introduction 213
9.1.1 Time Series-Based Techniques 214
9.1.2 Spatial Correlation-Based Techniques 214
9.1.3 Physical Power Prediction Models 216
9.2…Grey Predictor Rolling Models 217
9.2.1 Traditional Grey Rolling Model GM(1,1) 219
9.2.2 Adaptive Alpha-Based GM(1,1) Model 226
9.2.3 Improved Shifted Grey Model 230
9.2.4 Averaged Grey Model 233
9.3…Hourly Wind Power Prediction 237
9.4…Conclusions 240
References 240
10 Lightning Protection of Large Wind-Turbine Blades 243
Abstract 243
10.1…Introduction 244
10.2…Evaluation of Lightning Incidence to Wind Turbines 245
10.3…Impact of Rotating Tower Blades 246
10.4…Lightning Current Transient Behavior Within the Turbine 249
10.5…Impact of Carbon Reinforced Plastic 251
10.6…Effect of Indirect Lightning on a Wind Turbine 253
10.7…Conclusions and Recommendations 254
Acknowledgment 255
References 255
11 Lightning Surge Analysis of a Wind Farm 258
Abstract 258
11.1…Introduction 259
11.1.1 Incidents Due to Lightning in Wind Turbines 259
11.1.2 Winter Lightning and ‘‘Back-Flow Surge’’ 259
11.1.3 Necessity of Reinforcement of a Collection System in Wind Farm 260
11.2…Wind Farm Model for Lightning Surge Analysis 260
11.2.1 Wind Farm Model 260
11.2.2 Model for Winter Lightning 262
11.2.3 Model for Surge Protection Device 263
11.2.4 Model Description by ARENE and PSCAD/EMTDC 264
11.3…Lightning Surge Analysis I: Comparison Between ARENE and EMTDC 264
11.3.1 Basic Comparison of the Surge Waveforms 264
11.3.2 Comparison of the Surge Propagations in the Wind Farm 266
11.3.3 Tendency of the Surge Propagations in the Wind Farm 266
11.4…Lightning Surge Analysis II: SPD’s Incidents Due to Back-Flow Surge 266
11.4.1 Analysis of the Surge Propagations in the Wind Farm 266
11.4.2 Analysis of Surge Waveforms 268
11.4.3 Analysis of Burnout Ratio of SPDs 270
11.4.4 Conclusive Discussions 272
11.5…Lightning Surge Analysis III: Effect of Overhead Earthing Wire(s) 272
11.5.1 Model of a Collection Line in a Wind Farm 273
11.5.2 Observation of Waveforms around SPDs 274
11.5.3 Evaluation of the Possibility of the SPD’s Burning out 275
11.5.4 Evaluation of Potential Rise of Earthing System 277
11.5.5 Conclusive Discussions 278
11.6…Conclusions 279
References 279
12 Electric Grid Connection and System Operational Aspect of Wind Power Generation 281
Abstract 281
12.1…Introduction 282
12.2…Grid Connection Requirements 284
12.2.1 Active Power Control 284
12.2.2 Frequency Control 287
12.2.3 Voltage Control 289
12.2.3.1 Wind Farm Protection and Fault Ride-Through 293
12.2.4 Communication Requirements 295
12.2.5 Supervisory Control and Data Acquisition (SCADA) 295
12.2.6 Other Requirements 296
12.2.6.1 Metering 296
12.2.6.2 Start and Stop 296
12.2.6.3 Modeling and Validation 296
12.3…System Operational Aspects of Wind Power Generation: Indian Experience 297
12.3.1 Remuneration for Wind Power 297
12.3.2 Operational Issues 300
12.3.3 Grid Connectivity and Evacuation Arrangements 301
12.3.4 Complementary Commercial Mechanisms [21] 301
12.3.5 Special Dispensation for Scheduling of Wind and Solar Generation 302
12.4…Discussion 305
12.5…Conclusions 306
References 307
13 Application of Pumped Storage to Increase Renewable Energy Penetration in Autonomous Island Systems 308
Abstract 308
13.1…Introduction 309
13.2…Short Description of the System 311
13.3…Outline of the Regulatory Framework 313
13.4…Operating Policy for Autonomous Island Systems with HPS 314
13.4.1 Discussion of Alternative Policies 314
13.4.2 Proposed Operating Policy for the Island System 317
13.4.3 HPS Internal Management Decisions 319
13.5…Evaluation of the Proposed Policy 321
13.5.1 Modelling of the System 321
13.5.2 Case Studies 323
13.6…HPS Investment Evaluation 326
13.6.1 Capacity Credit Calculation 326
13.6.2 Economic Evaluation of HPS Investments 329
13.7…A Real-World Study Case: The HPS of Ikaria Island 330
13.7.1 Description of the Ikaria HPS and Power System 332
13.7.2 Internal Operating Policy of Ikaria HPS 333
13.7.3 Results Achieved by the Operation of the HPS 334
13.8…Discussion on Technical Issues 341
13.9…Conclusions 342
Acknowledgment 342
A.1. Appendix 1: Technical Data of the Ikaria HPS and APS 343
A.2. Appendix 2: Basic Financial Indices 345
References 346
14 Grid Frequency Mitigation Using SMES of Optimum Power and Energy Storage Capacity 349
Abstract 349
14.1…Introduction 349
14.1.1 Renewable Energy 349
14.1.2 The Scenarios for the Future on Wind Energy in the World 351
14.2…Overview of SMES 353
14.2.1 Advantages of SMES 354
14.2.2 SMES for Load Frequency Control Application 354
14.3…Model System Considered for Simulation Analyses 355
14.4…Governor and AVR Systems 355
14.4.1 Governor for Hydro, Thermal, and Nuclear Generators 357
14.4.2 Automatic Voltage Regulator 357
14.4.3 Load Frequency Control Model 358
14.5…Method of Calculating Power System Frequency 358
14.5.1 Control System of SMES 361
14.5.2 Generation of Line Power Reference, PLref 361
14.6…Analysis of SMES Power Rating 364
14.7…Simulation Results 367
14.8…Conclusions 374
References 374
Part III Offshore Trends 376
15 Space-Based Observation of Offshore Strong Wind for Electric Power Generation 377
Abstract 377
15.1…Introduction 377
15.2…Scatterometer 378
15.3…Height Dependence 379
15.4…Stability Dependence 381
15.5…Climatological Distribution 383
15.6…Regional Features 385
15.6.1 Aerodynamics 385
15.6.2 Land Topography 390
15.7…Conclusions 391
Acknowledgment 392
References 392
16 Power-Flow Control and Stability Enhancement of Four Parallel-Operated Offshore Wind Farms Using a Line-Commutated HVDC Link 394
Abstract 394
16.1…Introduction 395
16.2…Configuration of the Studied System 397
16.2.1 Wind Speed Model 399
16.2.2 Wind Turbine Model 400
16.2.3 Mass-Spring-Damper Model 400
16.2.4 Induction Generator Model 402
16.2.5 Excitation Capacitor Bank Model 402
16.2.6 Step-up Transformer, AC Line, and Power Grid Models 403
16.2.7 Line-Commutated HVDC Link Model 403
16.3…Design of a PID RCR Using Modal Control Theory 405
16.3.1 Linearized System 406
16.3.2 Design of a PID RCR 406
16.4…Steady-State Analysis 408
16.4.1 Steady-State Operating Conditions under Various Wind Speeds 409
16.4.2 Dynamic Stability under Various Wind Speeds 409
16.4.3 Eigenvalue Sensitivity of PID RCR’s Parameters 409
16.4.4 Summary of the Analyzed Results 415
16.5…Dynamic Simulations under Various Wind-Speed Disturbance Conditions 415
16.5.1 Identical Wind-Speed Disturbance Applied to Four Wind IGs 416
16.5.2 Different Wind-Speed Disturbances Applied to Four Wind IGs 417
16.6…Conclusion 420
Acknowledgements 420
A.1. Appendix16.7…Appendix 420
A.1.0 System Parameters 420
References 422
17 Fault Ride-Through of HVDC Connected Large Offshore Wind Farms 424
Abstract 424
17.1…Large Offshore Wind Farm Integration Using HVDC 424
17.2…System Outline and Operation Principles 425
17.2.1 GSVSC Modeling and Control 426
17.2.2 WFVSC Modeling and Control 427
17.3…System Fault Ride-Through During Onshore AC Fault 429
17.3.1 GSVSC 430
17.3.2 WFVSC 431
17.3.2.1 Option 1: Communication based 432
17.3.2.2 Option2: offshore frequency modulation 432
17.3.2.3 DC Damping Resistor 434
17.4…Case Studies 434
17.4.1 Option 1 434
17.4.2 Option 2 436
17.4.3 Option 3 437
17.5…Conclusions 438
References 438
18 Connection of Off-Shore Wind Farms Using Diode Based HVDC Links 440
Abstract 440
18.1…Introduction 441
18.1.1 HVDC Connection of Large Off-Shore Wind Farms 441
18.1.2 Diode-Based HVDC Links 442
18.1.3 Proposed Solution 443
18.2…Overall System Description and Modeling 443
18.2.1 General Overview 443
18.2.2 Wind turbine 443
18.2.2.1 Wind Turbine Rotor 444
18.2.2.2 Mechanical Drive Train 445
18.2.2.3 Permanent Magnet Synchronous Generator 445
18.2.2.4 Back-to-Back Converter 446
18.2.2.5 Transformer 447
18.2.3 Off-Shore Ac-Grid and Diode-Based HVDC Link 447
18.3…Integrated Wind Farm and HVDC Control 448
18.3.1 Overall Control Strategy 448
18.3.2 Wind Turbine Control 449
18.3.2.1 Wind Turbine Speed Control 449
18.3.2.2 PMSG Current Control 450
18.3.2.3 Back-to-Back Converter DC-Link Voltage Control 451
18.3.3 Wind Turbine Grid Integration 452
18.3.3.1 Front-End Converter Current Control 454
Distributed Voltage and Frequency Control 455
Distributed Off-Shore Ac-Grid Voltage Control 455
Distributed Off-Shore Ac-Grid Frequency Control 456
18.3.4 Integrated Wind Farm and HVDC Control 457
18.3.4.1 General Description and Modes of Operation 457
18.3.4.2 Self-Start Operation 459
18.3.5 Protection Using a VDCOL 460
18.4…System Performance 461
18.4.1 Islanded Operation (Operation Mode A) 462
18.4.1.1 Self- Start Operation 463
18.4.1.2 Self-Start Operation with Power Limits in Some Wind Turbines 463
18.4.2 Connected Operation 465
18.4.2.1 Frequency Control 465
18.4.2.2 Power Tracking 465
18.4.3 Transient Performance 466
18.4.3.1 Capacitor Bank Switching 466
18.4.3.2 Fault Ride-Through Operation 468
On-Shore Ac-Grid Voltage Sag 468
Disconnection of a Substantial Number of Wind Turbines 470
HVDC Rectifier Breaker Trip and Reclosure 470
18.5…Discussion and Conclusions 472
Acknowledgments 472
References 472
19 Wind Farm with HVDC Delivery in Inertial and Primary Frequency Response 474
Abstract 474
19.1…Introduction 475
19.2…LCC-HVDC Average Model and Conventional Control 478
19.3…Inertial Response Enhancement and Frequency Droop Control via HVDC 479
19.3.1 Inertial Response Enhancement 479
19.3.2 Frequency Droop Control 480
19.4…Coordination in Wind Generation 481
19.5…Case Study 483
19.5.1 Discussion on Inertial Enhancement Results 484
19.5.2 Frequency Droop 487
19.5.3 With Both Inertial Enhancement and Frequency Droop 488
19.5.4 Application in VSC-Based HVDC 489
19.6…Conclusion 490
References 490
20 HOTT Power Controller With Bi-Directional Converter (HPB) 493
Abstract 493
20.1…Introduction 493
20.2…Proposed HPB Model System 494
20.2.1 Model Setup 494
20.2.2 Offshore-Wind Turbine 495
20.2.3 Tidal Turbine (Flywheel) 496
20.2.4 Maximum Power Flow Control 498
20.2.5 Inverter Circuit Configuration 499
20.3…Hybrid System (Circuit Configuration) 500
20.4…Changing Voltage Frequency 50--46--50 Hz 500
20.4…Experimental Results 502
20.5…Discussion 506
20.6…Conclusion 506
References 507
21 Transmission of Bulk Power from DC-Based Offshore Wind Farm to Grid Through HVDC System 508
Abstract 508
21.1…Introduction 509
21.2…System Overview 511
21.3…Modeling and Control of the Individual Components of the Proposed System 512
21.3.1 Wind Turbine 512
21.3.2 DC-Based Wind Farm 514
21.3.3 Full-Bridge DC--DC Converter of the Offshore HVDC Station 515
21.3.3.1 Phase Shift PWM Control of the FB DC--DC Converter 516
21.3.3.2 Fuzzy Logic Controller 517
21.3.3.3 Overvoltage Protection Scheme 518
21.3.4 Onshore HVDC Station 519
21.4…Simulation Analysis 520
21.4.1 Dynamic Characteristics Analysis 520
21.4.2 Transient Characteristics Analysis 523
21.5…Conclusions 525
Acknowledgments 525
A.1. AppendixAppendix 525
References 526
Index 528

Erscheint lt. Verlag 5.1.2012
Reihe/Serie Green Energy and Technology
Zusatzinfo XXVI, 526 p.
Verlagsort London
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte Energy Storage Systems • Offshore wind farms • Wind Energy Control • Wind Farm Reliability • Wind Farm Stability • Wind Power Variability
ISBN-10 1-4471-2201-1 / 1447122011
ISBN-13 978-1-4471-2201-2 / 9781447122012
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 25,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 24,40
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 48,80