Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Spectral Theory of Infinite-Area Hyperbolic Surfaces (eBook)

(Autor)

eBook Download: PDF
2007 | 2007
XI, 355 Seiten
Birkhäuser Boston (Verlag)
9780817646530 (ISBN)

Lese- und Medienproben

Spectral Theory of Infinite-Area Hyperbolic Surfaces - David Borthwick
Systemvoraussetzungen
109,99 inkl. MwSt
(CHF 107,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is a self-contained monograph on spectral theory for non-compact Riemann surfaces, focused on the infinite-volume case. By focusing on the scattering theory of hyperbolic surfaces, this work provides a compelling introductory example which will be accessible to a broad audience. The book opens with an introduction to the geometry of hyperbolic surfaces. Then a thorough development of the spectral theory of a geometrically finite hyperbolic surface of infinite volume is given. The final sections include recent developments for which no thorough account exists.


This book is a self-contained monograph on spectral theory for non-compact Riemann surfaces, focused on the infinite-volume case. By focusing on the scattering theory of hyperbolic surfaces, this work provides a compelling introductory example which will be accessible to a broad audience. The book opens with an introduction to the geometry of hyperbolic surfaces. Then a thorough development of the spectral theory of a geometrically finite hyperbolic surface of infinite volume is given. The final sections include recent developments for which no thorough account exists.

Preface.- Hyperbolic surfaces.- Geometry of H.- Fuchsian groups.- Geometric finiteness.- Classification of hyperbolic ends.- Length spectrum and Selberg’s zeta function.- Review of the Compact Case.- Spectral theory for compact manifolds.- Selberg’s trace formula for compact surfaces.- Consequences of the trace formula.- Review of the finite-volume case.- Finite-volume hyperbolic surfaces.- Spectral theory.- Selberg’s trace formula.- Scattering Theory in Model Cases.- Spectral theory of H.- Scattering theory on H.- Hyperbolic cylinders.- Funnels.- Parabolic cylinder.- Scattering Theory for infinite-volume hyperbolic surfaces.- Compactification.- Continuation of the resolvent.- Resolvent asymptotics and the stretched product.- Structure of the resolvent kernel.- Discrete and continuous spectrum.- Generalized eigenfunctions.- Scattering matrix.- Structure of kernels in the conformally compact case.- Resonances and scattering poles.- Multiplicities of resonances.- Scattering poles.- Half-integer points.- Coincidence of resonances and scattering poles.- Upper bound on the density of resonances.- Infinite-volume spectral geometry.- Relative scattering determinant.- Regularized traces.- The resolvent 0-trace calculation.- Structure of Selberg’s zeta function.- The Poisson formula for resonances.- Application.- Lower bounds on the density.- Weyl formula for the scattering phase.- The length spectrum.- Finiteness of isospectral classes.- Appendix A Functional analysis.- Basic spectral theory.- Analytic Fredholm theorem.- Operator residues and multiplicities.- Appendix B Asymptotic expansions.- References.- Index.

Erscheint lt. Verlag 13.9.2007
Reihe/Serie Progress in Mathematics
Progress in Mathematics
Zusatzinfo XI, 355 p.
Verlagsort Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Complex Analysis • Distribution • Functional Analysis • Inverse scattering problem • Partial differential equations • resonance theory • Riemann Surfaces • scattering theory • spectral theory
ISBN-13 9780817646530 / 9780817646530
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich