Environmental Bioengineering (eBook)
XXVIII, 867 Seiten
Humana Press (Verlag)
9781603270311 (ISBN)
The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution - air, water, soil, and noise. Since pollution is a direct or indirect consequence of waste production, the seemingly idealistic demand for "e;zero discharge"e; can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identi ed: (1) How serious is the pollution? (2) Is the technology to abate it available? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the above three questions. The traditional approach of applying tried-and-true solutions to speci c pollution problems has been a major contributing factor to the success of environmental engineering, and has accounted in large measure for the establishment of a "e;methodology of pollution control. "e; However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken.
Environmental Bioengineering 3
Dedications 5
Preface 7
Contents 11
Contributors 25
1 Treatment and Disposal of Biosolids 29
1 Wastewater Treatment and Biosolids Formation 29
2 Characteristics of Biosolids 32
2.1 Total Solids Content 32
2.2 Volatile Solids Content 32
2.3 pH 33
2.4 Organic Matter 33
2.5 Nutrients 33
2.5.1 Nitrogen 34
2.5.2 Phosphorus 34
2.5.3 Other Plant Nutrients 34
2.5.4 Metals 35
2.5.5 Toxic Organic Chemicals 35
2.5.6 Pathogens 35
3 Regulations Governing Agricultural Use of Biosolids 38
3.1 Standards for Pathogens 38
3.1.1 Class A Pathogen Requirements 39
3.1.2 Class B Pathogen Requirements 42
3.2 Pollutant Limits 44
3.2.1 U.S. Chemical Pollutant Standards for Agricultural Use of Biosolids 44
3.2.2 Biosolids Quality and Part 503 Requirements 47
3.2.3 Chemical Pollutant Standards for Agricultural Use of Biosolids in Russia and European Countries 50
4 Sludge Treatment Processes 51
4.1 Volume Reduction Processes 52
4.1.1 Thickening 52
4.1.2 Dewatering 52
4.1.3 Conditioning 53
4.1.4 Drying 53
4.2 Stabilization Processes 53
4.2.1 Aerobic Digestion 53
4.2.2 Anaerobic Digestion 55
4.2.3 Composting 57
4.3 Other Sludge Treatment Processes 63
5 Biosolids Use and Disposal 63
5.1 Land Application 64
5.1.1 Application to Agricultural Lands 65
5.1.2 Application to Forest Lands 67
5.1.3 Land Reclamation 68
5.1.4 Other Options of Sewage Sludge Land Application 71
5.2 Landfilling and Incineration 72
5.2.1 Landfilling 72
5.2.2 Incineration 74
2 Ultrasound Pretreatment of Sludge for Anaerobic Digestion 80
1 Introduction 80
2 Pretreatment of Sludge for Anaerobic Digestion 82
2.1 Anaerobic Digestion 82
2.2 Methods of Pretreatment 83
2.2.1 Thermal Treatment 83
2.2.2 Chemical Treatment 83
2.2.3 Mechanical Treatment 84
2.2.4 Enzyme Treatment 85
2.2.5 Irradiation Treatment 85
3 Fundamental of Ultrasound 85
3.1 Introduction 85
3.2 Acoustic Cavitation 86
3.2.1 Generation of Cavitation 86
3.2.2 Two Types of Cavitation 86
3.2.3 Acoustic Cavitation Conditions 86
3.2.4 Effects of Acoustic Cavitation 87
3.3 Bubble Dynamics 87
3.3.1 Formation of Bubbles 87
3.3.2 Jet Formation 88
3.3.3 Sonoluminescence 88
4 Effects of Ultrasound 88
4.1 Chemical Effects 88
4.2 Biological Effects 88
4.2.1 Mechanisms of Biological Damage 88
4.2.2 Bioeffects of Ultrasound 89
5 Industrial Ultrasound Applications 89
5.1 Process Parameters 89
5.2 Industrial Applications 90
5.2.1 Applications in Liquids 90
5.2.2 Applications in Solids 90
6 Ultrasonication for Environmental Engineering Applications 90
6.1 Ultrasonication on Wastewater Treatment 91
6.1.1 Reactions of Ultrasound on Wastewater Treatment 91
6.1.2 Types of Pollutants Treated by Ultrasound 91
6.2 Ultrasonication on Anaerobic Digestion 93
6.2.1 Reactions of Ultrasound Pretreatment 94
6.2.2 Influencing Parameters 95
6.2.3 Ultrasonic Sludge Disintegration 97
6.2.4 Methods to Enhance Ultrasound Efficiency 97
3 Solubilization of Sewage Sludge to Improve Anaerobic Digestion 101
1 Introduction 101
2 Optimum Operating Conditions of Experimental Apparatus 104
2.1 Experimental Apparatus and Methods 104
2.1.1 Experimental Apparatus 104
2.1.2 Experimental Method 104
2.2 Optimum Operating Conditions of Experimental Apparatus 106
2.2.1 Changes of Medium Radius with Disk Process 106
2.2.2 Effects of Preheating Process on Solubilization 107
2.2.3 Effects of Rotary Speed of Disk on Solubilization 108
2.2.4 Changes of Solubilization Rate with Treatment Process 108
2.2.5 Effect of Disk Gap on Solubilization 109
2.2.6 Effects of Sludge Concentrations on Solubilization 110
2.2.7 Comparison of Treatment Cost 111
2.3 Results and Discussion 111
3 Biodegradation of the Sludge Treated by Solubilization Process 112
3.1 Anaerobic Biodegradation 112
3.1.1 Vial Test on Anaerobic Biodegradation 113
3.1.2 Continuous Experiment on Anaerobic Biodegradation 117
3.2 Aerobic Biodegradation 125
3.2.1 Aerobic Biodegradation by BOD Experiment 125
3.2.2 Continuous Experiment on Aerobic Biodegradation 127
3.3 Batch Test on Anaerobic Biodegradation of Digested Sludge Treated After Solubilization 133
3.3.1 Objective 133
3.3.2 Methods and Experimental Conditions 135
3.3.3 Results and Discussion 135
3.3.4 Conclusions 137
4 Comparison With Other Methods of Sludge Solubilization 138
4.1 Comparison of Ultrasonic Method and High-Speed Rotary Disk Process Method 138
4.1.1 Objective 138
4.1.2 Comparison Methods and Conditions 138
4.1.3 Calculation Method 138
4.1.4 Observations 139
4.2 Comparison of Pressure Exploded Process and High-Speed Rotary Disk Process 140
4.2.1 Objective 140
4.2.2 Comparison Method and Condition 140
4.2.3 Calculation Method 140
4.2.4 Observations 142
4.2.5 Conclusion 144
4 Applications of Composted Solid Wastes for Farmland Amendment and Nutrient Balance in Soils 149
1 Introduction 149
2 Chemical Elements in Composted Solids and Composts-Amended Soil 154
2.1 Sampling, Pretreatment, and Analysis of Composts and Soil 154
2.2 Macronutrient Elements (P, K, Ca, Mg) in Composted Solid Wastes and Compost-amended Soil 156
2.2.1 P, K, Ca, and Mg in Composts 156
2.2.2 P, K, Ca, and Mg in Composts-Amended Soil 157
2.3 Micronutrient Elements (Fe, Mn, Cu, Zn) in Composted Solid Wastes and Composts-amended Soil 159
2.3.1 Fe, Mn, Cu, and Zn in Composts 159
2.3.2 Fe, Mn, Cu, and Zn in Composts-Amended Soils 162
2.4 Heavy Metals (Cd, Cr, Ni, Co, Pb) in Composted Solid Wastes and Composts-Amended Soil 168
2.4.1 Cd, Cr, Ni, Co, and Pb in Composted Solid Wastes 168
2.4.2 Cd, Cr, Ni, Co, and Pb in Composts-Amended Soils 169
2.5 Organic Matter and Moisture Content in Composts and Unpolluted Soil 173
3 Farmland Applications of Composted Solid Wastes for Nutrient Balance 174
3.1 Principle of Nutrient Balance in Soil 174
3.2 Evaluation of the Compost Application in Farmland 175
3.2.1 Input–Output of Mineral Elements in Compost-Amended Farmland 176
3.2.2 Field Experimental Observation 180
4 Summary 184
6 Kitchen Refuse Fermentation 217
1 Introduction 217
1.1 Availability and Potential of Kitchen Refuse Biomass 218
2 Fermentation of Kitchen Refuse 219
2.1 Natural Fermentation Process 219
2.2 Controlled Fermentation 221
3 Production of Methane 221
4 Production of Organic Acids 223
5 Production of l-Lactic Acid 224
6 Potential Applications of Kitchen Refuse Fermentation Products 226
6.1 Production of Poly-3-Hydroxyalkanoates Using Organic Acids 226
6.2 Production of Poly-Lactate Using Organic Acids 228
6.3 Environmental Mitigation of Greenhouse Gases Effect 230
7 Integrated Zero Discharge Concepts of Municipal Solid Waste Management and Handling 230
5 Biotreatment of Sludge and Reuse 190
1 Introduction 190
2 Sewage Sludge 192
2.1 Sewage Sludge Generation 192
2.2 Health Impacts of Sludge Utilization 192
2.3 Regulatory Issues on Sludge Disposal 193
2.4 A Sustainable Approach for Sludge Disposal 195
3 Composting of Sludge 196
3.1 Historical Background of Composting 196
3.2 Composting Process 197
4 Types of Composting Systems 198
5 Factors Affecting Composting Process 199
5.1 Temperature 199
5.2 Time 200
5.3 pH 200
5.4 C/N ratio 200
5.5 Moisture Content 201
5.6 Aeration 201
5.7 Mixing 202
5.8 Size 202
5.9 Microorganism 202
5.10 Use of Inocula 202
5.11 Seeding and Reseeding 202
6 Solid State Bioconversion Technique 203
7 Microbial Basis of SSB Processes 203
7.1 Microbial Type 203
7.2 Bacteria 204
7.3 Yeasts 204
7.4 Filamentous Fungi 204
8 Case Studies 204
8.1 Case 1: Utilization of Sewage Sludge as Fertilizer and as Potting Media 204
8.2 Case 2: Reduction of Heavy Metals in Sewage Sludge During Composting 206
8.3 Case 3: Solid State Bioconversion of Oil Palm Empty Fruit Brunches (EFB) into Compost by Selected Microbes 206
8.4 Case 4: Composting of Selected Organic Sludges Using Rotary Drum 208
8.5 Case 5: Bioreactor Co-composting of Sewage Sludge and Restaurant Waste 211
7 Heavy Metal Removal by Crops from Land Application of Sludge 235
1 Introduction 235
1.1 Definition of Phytoremediation 236
1.2 Heavy Metals in Soil 237
1.2.1 Natural Content of Heavy Metals in Soil 238
1.3 Heavy Metals from Sludge 239
1.4 Land Application of Sludge 239
1.4.1 Sewage Sludge Generation 239
1.4.2 Land Application of Sludge in Malaysia 240
1.4.3 Characteristic of Sludge 241
1.4.4 Some Statistics on Sludge 243
2 Principles of Phytoremediation 244
2.1 Types of Crops and the Uptake Relationship of Heavy Metal 244
2.1.1 Phytoaccumulation 244
2.1.2 Phytodegradation 245
2.1.3 Phytostabilization 245
2.1.4 Phytovolatilization 245
2.1.5 Rhizodegradation 245
2.1.6 Rhizofiltration 246
2.1.7 Impact of Heavy Metals on Plants 246
2.2 Design Parameters 247
2.2.1 Monitoring Plan 248
2.2.2 Limitations 248
2.3 Empirical Equations 249
2.4 Health Effects 249
3 Standards and Regulations 250
3.1 Sludge Application on Land 250
3.2 Standards and Regulations of Sludge Applications in Malaysia, the USA, and Europe 251
4 Case Studies and Research Findings 252
5 Design Example 254
6 Future Direction Research 254
8 Phytoremediation of Heavy Metal Contaminated Soils and Water Using Vetiver Grass 257
1 Global Soil Contamination 257
2 Remediation Techniques 258
2.1 Physical and Chemical Techniques 258
2.2 Bioremediation Techniques 258
2.3 Phytoremediation 258
2.3.1 Phytoextraction 259
2.3.2 Phytofiltration 259
2.3.3 Phytostabilization 259
2.3.4 Phytovolatilization 259
2.3.5 Phytomining 259
2.3.6 Limitations of Phytoremediation 259
2.3.7 Plants for Phytoremediation 260
3 Vetiver Grass as an Ideal Plant for Phytoremediation 260
3.1 Unique Morphology and Physiology 261
3.2 Tolerance to Adverse Soil Conditions 261
3.3 Tolerance to High Acidity and Manganese Toxicity 261
3.4 Tolerance to High Acidity and Aluminum Toxicity 262
3.5 Tolerance to High Soil Salinity 262
3.6 Tolerance to Strongly Alkaline and Strongly Sodic Soil Conditions 264
3.7 Tolerance to Heavy Metals 264
3.7.1 Tolerance Levels and Shoot Contents of Heavy Metals 264
3.7.2 Distribution of Heavy Metals in the Vetiver Plant 264
3.8 Tolerance to Extreme Nutrient Levels 266
3.9 Tolerance to Agrochemicals 266
3.10 Breaking Up of Agrochemicals 267
3.11 Growth 267
3.11.1 Root System 268
3.11.2 Shoots 268
3.12 Weed Potential 268
4 Phytoremediation Using Vetiver 268
5 Case Studies 269
5.1 Australia 269
5.1.1 Gold Mine 269
5.1.2 Coal Mine 279
5.1.3 Bentonite Mine 279
5.1.4 Bauxite Residue or Alumina Redmud 284
5.1.5 Landfill Rehabilitation and Leachate Treatment 285
5.1.6 Domestic Wastewater Treatment 286
5.1.7 Industrial Wastewater Treatment 289
5.2 China 290
5.3 South Africa 291
6 Recent Research in Heavy Metal Phytoremediation Using Vetiver 291
6.1 Growth 292
6.2 Results 293
7 Future Large Scale Applications 294
7.1 Phyto-extraction 295
7.2 Phyto-stabilization and Mine Site Rehabilitation (55–57) 295
7.3 Landfill Rehabilitation and Leachate Treatment (58,60) 295
7.4 Wastewater Treatment (59) 295
7.5 Other Land Rehabilitation 295
8 Benefits of Phytoremediation with Vetiver Grass 295
9 Conclusion 296
9 Bioremediation 300
1 Introduction 300
1.1 Environmental Pollution: An Overview 300
1.2 Environmental Remediation Strategies 301
1.3 Bioremediation: A Concept 301
1.4 Advantages of Bioremediation 302
2 Environmental Contaminants 303
2.1 Environmental Contaminants 303
2.2 Chlorinated Contaminants 303
2.2.1 Microbial Degradation of Chlorinated Pollutants 308
2.3 Polycyclic Hydrocarbons and Petroleum Contaminants 310
2.3.1 Microbial Degradation of Polycyclic Aromatic and Petroleum Hydrocarbons 311
2.4 BTEX and Pesticides Contaminants 312
2.4.1 Microbial Degradation of BTEX and Pesticides 313
2.5 Heavy Metal Contaminants 314
2.5.1 Remediation of Metal Contaminants 315
2.5.2 Microbial Removal of Heavy Metal Contaminants 315
3 Bioremediation Strategies 321
3.1 Landfarming 321
3.2 Composting 321
3.3 In Situ Intrinsic Bioremediation 323
3.4 Ex Situ or Slurry Bioremediation 324
3.5 Bioaugmentation 324
4 Application of Bioremediation 325
4.1 Case Studies of Bioremediation 325
4.1.1 Fruit and Vegetable Processing Industry 325
4.1.2 Olive Oil Industry 325
4.1.3 Fermentation Industry 326
4.1.4 Dairy Industry 326
4.1.5 Meat, Poultry and Fish Industries 326
4.1.6 Oil Refinery Sludge 327
4.1.7 Coke Plant Wastewater 327
4.1.8 Marine Bioremediation 327
4.2 Factors for Designing a Bioremediation Process 329
4.2.1 Biodegradative Performance 329
4.2.2 Anaerobic–Aerobic Processes 329
4.2.3 Catalyst Performance 330
4.2.4 In-Complete and Complete Metabolic Pathways 330
4.2.5 Pollutant Bio-availability 331
4.2.6 Catalyst Survival in the Environment 331
4.3 Bioremediation Process Design and Implementation 331
5 Limitation of Bioremediation Strategy 331
6 Future Prospects 332
10 Wetlands for Wastewater Treatment 340
1 Introduction 340
2 What are Wetlands? 341
2.1 Wetland Functions and Values 342
3 Natural Wetlands 342
4 Constructed Wetlands 343
4.1 Components of Constructed Wetlands 344
4.2 Advantages of Constructed Wetlands for Wastewater Treatment 344
4.3 Types of Constructed Wetlands 345
4.3.1 Surface Flow System 346
4.3.2 Subsurface Flow System 346
5 Mechanisms of Treatment Processes for Constructed Wetlands 347
5.1 Biodegradable Organic Matter Removal Mechanism 347
5.2 Suspended Solids Removal Mechanism 348
5.3 Nitrogen Removal Mechanism 349
5.4 Heavy Metals Removal Mechanism 349
5.5 Pathogenic Bacteria and Viruses Removal Mechanism 350
5.6 Other Pollutants Removal Mechanism 350
6 Selection of Wetland Plant 350
6.1 Function of Wetland Plants 350
6.2 Roles of Wetland Plants 351
6.3 Types of Wetland Plants 352
6.4 Selection of Wetland Plants 352
7 Design of Constructed Wetland Systems 357
7.1 Design Principles 357
7.2 Hydraulics 357
7.3 General Design Procedures (13) 359
7.3.1 Surface Flow Wetland 359
7.3.2 Subsurface Flow Wetland 360
8 Wetland Monitoring and Maintenance 363
8.1 Water Quality Monitoring 364
9 Case Study 365
9.1 Putrajaya Wetlands, Malaysia 365
9.2 Acle, Norfolk, United Kingdom (17) 366
9.3 Arcata, California (10) 367
11 Modeling of Biosorption Processes 374
1 Introduction 374
2 Batch Operation 376
2.1 Batch Process Models 376
2.2 Equilibrium Isotherms 376
2.3 Rate Models 379
2.4 Pore Diffusion Model 379
2.5 Homogeneous Surface Diffusion Model 381
2.6 Second-Order Reversible Reaction Model 383
3 Column Operation 384
3.1 Fixed Bed Process Models 384
3.2 Rate Models 385
3.3 Pore Diffusion Model 385
3.4 Homogeneous Surface Diffusion Model 386
3.5 Second-Order Reversible Reaction Model 388
3.6 Quasichemical Kinetic Model 389
4 Examples 390
12 Heavy Metal Removal by Microbial Biosorbents 398
1 Introduction 398
2 Conventional Technologies for Heavy Metal Removal 400
2.1 Chemical Precipitation 400
2.2 Ion Exchange 400
2.3 Membrane Technology 401
2.4 Flocculation and Coagulation 401
2.5 Flotation 401
2.6 Electrodialysis 401
3 Heavy Metal Removal by Microbial Biosorbents 403
3.1 Biosorption 403
3.2 Microbial Biosorbents 404
3.3 Environmental Factors for Biosorption 405
3.4 Biosorption Mechanisms 407
3.5 Biosorption Sites 409
4 Biosorption Isotherms 411
4.1 The Langmuir Isotherm 411
4.2 The Freundlich Isotherm 412
4.3 The Redlich–Peterson Isotherm 413
5 Biosorption Kinetics 413
5.1 Pseudo-First-Order Kinetic Model 415
5.2 Pseudo-Second-Order Kinetic Model 415
5.3 Elovich Kinetic Model 416
6 Examples 418
13 Simultaneous Removal of Carbon and Nitrogen from Domestic Wastewater in an Aerobic RBC 426
1 Introduction 426
1.1 Characteristics of Domestic Wastewaters 427
1.2 Adverse Effects of Nitrogenous Discharges 428
1.3 Nitrogen Forms and Transformation in Wastewater Treatment 428
2 Carbon and Nitrogen Removal from Domestic Wastewaters 429
2.1 Biochemical Reactions 430
3 Bio-Reactors Employed for Carbon and Nitrogen Removal 431
3.1 Trickling Filters 432
3.2 Rotating Biological Contactor 432
3.3 Conventional Activated Sludge Processes at Low Loadings 433
3.4 Two-Stage Activated Sludge Systems with Separate Carbonaceous Oxidation and Nitrification Systems 433
4 Processes Employed for Simultaneous Carbon and Nitrogen Removal 433
4.1 Separated Stage Process 434
4.2 Single Stage Process 434
5 Development of RBCs 435
5.1 Application of Rotating Biological Contactors for Domestic Wastewater Treatment 436
5.1.1 Components of Rotating Biological Contactor 437
5.1.2 Mechanism of Substrate Removal in RBC 438
5.1.3 Development of Microbial Communities in Aerobic RBC 439
5.2 Importance of Aerobic RBC 439
5.2.1 Nitrification in RBCs 439
5.2.2 Denitrification in RBC 441
5.2.3 Combined Nitrification–Denitrification in RBC 442
5.2.4 Single Stage Carbon Removal, Nitrification, and Denitrification in an Aerobic RBC System 443
5.3 Advantages of Aerobic RBC 444
5.4 Demerits of RBC 445
5.5 Major Design Criteria for New Generation RBCs 446
5.6 Recent Developments 446
6 Summary and Conclusions 450
7 Design Examples 451
14 Anaerobic Treatment of Low-Strength Wastewater by a Biofilm Reactor 467
1 Anaerobic Process 467
1.1 Anaerobic Metabolism 467
1.2 Anaerobic Process Dependence 469
1.3 Direct Anaerobic Treatment of Wastewater 470
2 Anaerobic Treatment Systems 473
2.1 Historical Development 473
2.2 Anaerobic Reactors 474
3 Anaerobic Biofilm Reactors 477
3.1 Reactor Configuration and Hydraulic Characteristics 477
3.2 Packing Media 478
3.3 Biomass Development and Time of Operation 480
4 Low-Strength Wastewater Treatment 481
4.1 Anaerobic Filters 481
4.1.1 Startup 481
4.1.2 Performance 487
4.1.3 Biogas Production 488
4.1.4 Packing Material 489
4.1.5 Biomass Accumulation and Disposal 490
4.2 Modified Systems 491
4.3 Process Modeling 492
4.4 Seasonal Operation 494
4.5 Reactor Design Recommendations 495
4.6 Posttreatment 496
5 Design Examples 501
15 Biological Phosphorus Removal Processes 519
1 Introduction 519
2 Biochemical Models for Enhanced Biological Phosphorus Removal 520
2.1 The Comeau/Wentzel Model 521
2.1.1 Under Anaerobic Conditions 521
2.1.2 Under Aerobic Conditions 522
2.2 The Mino Model 522
2.2.1 Under Anaerobic Conditions 523
2.2.2 Under Aerobic Conditions 524
2.3 The Adapted Mino Model 524
2.3.1 Under Anaerobic Conditions 524
2.3.2 Under Aerobic Conditions 525
3 Microbiology of the EBPR Processes 525
3.1 Phosphorus Accumulating Organisms 525
3.2 Non-polyphosphate Glycogen Accumulating Organisms 527
4 Biological Phosphorus Removal Processes 527
4.1 Process Description 528
4.1.1 PhoStrip Process 528
4.1.2 The Bardenpho Process 528
4.1.3 Anaerobic/Oxic Process 529
4.1.4 The UCT Process 529
4.1.5 The Modified Activated Sludge Process 530
4.1.6 Combined Process for Biological Phosphorus Removal 530
4.1.7 SBR Process 530
4.1.8 Granular Sludge Process 530
4.2 Process Applications and Limitations 531
5 Factors Affecting EBPR 532
5.1 Type of Substrate 532
5.2 Organic Loading 533
5.3 Magnesium and Potassium 533
5.4 Nitrate Content in the Influent 533
5.5 Phosphorus Loading 534
5.6 Temperature 534
5.7 pH 534
5.8 Dissolved Oxygen 535
5.9 Lengths of Anaerobic and Aerobic Phases 535
5.10 Solid Retention Time 536
16 Total Treatment of Black and Grey Water for Rural Communities 544
1 Introduction 544
2 Domestic Wastewater Characteristics 547
2.1 Physical Parameters 548
2.2 Chemical Parameters 549
2.3 Microorganisms 553
3 Guidelines for Water Treatment and Testing 553
4 Traditional Wastewater Treatment 554
4.1 Wastewater Treatment and Reuse 557
5 Ecologically Sustainable Wastewater Management System: A Case Study 561
5.1 Background 561
5.2 Design Parameters and Considerations 561
5.3 Sampling and Testing 565
5.4 Treatment Performance 565
5.5 Conclusions 569
17 Anaerobic Treatment of Milk Processing Wastewater 576
1 Introduction 576
1.1 The Milk Processing Industry 577
1.2 Major Environmental Problems Caused by Milk Processing Effluents 577
1.2.1 Direct Discharge into a Water Body 578
1.2.2 Direct Discharge onto Land 578
1.2.3 Treatment in Lagoons 578
2 The Effluents from Milk Processing Industries 579
2.1 Origins of Liquid Pollution in the Milk Processing Industry 579
2.2 Characterization of Effluents from Milk Processing Industry 581
2.3 The Specific Problems of Cheese Whey 584
2.4 Good Management Practices and Benchmarking 588
3 The Anaerobic Treatment Process 589
3.1 Description of Anaerobic Process 590
4 The Anaerobic Treatment of Milk Processing Effluents 597
4.1 Benefits of Anaerobic Process for Milk Processing Effluents 597
4.2 The Role of Anaerobic Systems in a Treatment Plant for Milk Processing Effluents 598
4.3 Anaerobic Digestion of Effluent Components 601
4.3.1 Sugars 601
4.3.2 Proteins 602
4.3.3 Fats 603
4.4 Special Considerations for Anaerobic Treatment of Milk Processing Effluents 606
4.5 Application of Anaerobic Technology to Milk Processing Effluents 609
4.5.1 Types of Anaerobic Systems Used for Milk Processing Effluents 609
4.5.2 Design Considerations for Anaerobic Systems in Milk Processing Industry 617
4.5.3 Loads and Operating Parameters in Anaerobic Systems for Milk Processing Effluents 618
4.5.4 Summary of Results for Anaerobic Treatment of Milk Processing Effluents 618
4.5.5 Choice of Anaerobic System for Treatment of Milk Processing Wastewater 618
4.5.6 Control of Anaerobic Processes Applied to Milk Processing Effluents 622
5 Case Studies 624
5.1 Case Study 1: Organic Shock Load (Whey Discharge) 625
5.2 Case Study 2: Toxic Discharge (Concentrated Aniline) 626
5.3 Case Study 3: Chemical Discharge (Soda Lime) 627
5.4 Case Study 4: Change in Cleaning Products 628
6 Design Examples and Questions 629
6.1 Design Example 1: Anaerobic Contact Reactor (Cheese Mill) 629
6.2 Design Example 2: UASB Reactor IC Type (Milk Processing Mill) 631
6.3 Design Example 3: UASB Reactor IC Type (Cheese Mill) 632
6.4 Design Example 4: Anaerobic Filter Reactor (Cheese Mill) 633
7 Trends in Anaerobic Treatment of Milk Processing Effluents 634
7.1 Results of Recent Investigations on Anaerobic Treatment of Milk Wastewater 634
7.2 Future Expected Developments 637
18 Biological Wastewater Treatment of Nutrient-Deficient Tomato-Processing and Bean-Processing Wastewater 649
1 Introduction 649
2 Wastewater Characteristics 651
3 Treatment Technologies 653
4 Novel Biological Treatment Technologies 653
4.1 Pilot-Scale Anaerobic/Aerobic Treatment System 654
4.1.1 System Setup 655
4.1.2 Performance of Anaerobic/Aerobic System 656
4.1.3 Performance of Portable Microza Ultrafiltration System 660
4.1.4 Impact of Prefermentation in the Anaerobic Tank 661
4.2 Bench-Scale Anaerobic/Aerobic Treatment System 664
4.2.1 System Setup 665
4.2.2 Effluent Quality in the Anaerobic/Aerobic Systems 666
4.2.3 HRT Effect on Anaerobic Tank Performance 670
4.2.4 Temperature Effect on System Performance 671
4.3 Bench-Scale UASB-Anoxic/Oxic System 673
4.3.1 System Setup 674
4.3.2 System Operation 676
4.3.3 Performance Analysis 676
4.3.4 Impacts of Process Parameters 680
4.3.5 Inert Accumulation 680
4.3.6 Post-UASB Treatment 680
5 Wastewater Characterization and Modeling 682
5.1 Characterization of Tomato-Processing Wastewater 682
5.1.1 Introduction 682
5.1.2 Experimental System Setup 684
5.1.3 Determination of Wastewater Fractions and Biokinetic Coefficients 684
5.1.4 Characterization Results 687
5.2 Modeling of Tomato-Processing Wastewater Treatment System 688
5.2.1 Introduction 688
5.2.2 Model Calibration 691
5.2.3 Model Scenario 692
5.2.4 Modeling Results 692
6 Design Example 694
7 Economic Evaluation of Treatment Alternatives 696
8 Summary 699
19 Animal Glue Production from Skin Wastes 705
1 Introduction 705
1.1 Animal Skin Generation Rates 706
1.2 Hide Removal from Cattle and Sheep 706
2 Animal Glue 706
2.1 General 707
2.2 Type 707
2.3 Properties and Chemical Composition 708
2.4 Manufacturing 709
3 Pretreatment and Conditioning 710
3.1 Acidic Pretreatment 710
3.2 Alkali (Lime) Pretreatment 710
3.3 Enzymic Proteolysis 711
4 Extraction 711
4.1 Denaturation 712
4.2 Thermal Treatment 712
5 Chemical Modification 713
6 Application 714
7 Case Study: Production of Glue 714
20 An Integrated Biotechnological Process for Fungal Biomass Protein Production and Wastewater Reclamation 718
1 Introduction 718
2 Fungal Biomass Protein Production 719
2.1 Fungal Biomass Protein 719
2.2 Fungal Biomass Protein Production 720
2.3 Fungal Biomass Protein Production from Starch Processing Wastewater 721
3 Reactor Configuration and Process Flow Diagram 725
3.1 Reactor Configuration 725
3.2 Process Flow Diagram 727
4 Oxygen Transfer and Hydrodynamics 728
4.1 Oxygen Transfer 728
4.2 Rheological Properties and DO levels 729
4.3 Hydrodynamic Characteristics and Oxygen Transfer Coefficient 730
4.4 Aeration Rate and Oxygen Transfer Coefficient 730
5 Process Design and Operation 733
5.1 Batch Process 733
5.2 Semi-continuous Process 734
5.3 Continuous Process 736
6 Summary and Conclusions 738
21 Algae Harvest Energy Conversion 741
1 Introduction 741
1.1 Algae Description 741
1.2 Composition of Algae 742
1.3 Classification of Microalgae 742
2 Cultivation 743
2.1 Factors Affecting Cultivation 743
2.1.1 Algal Strain 744
2.1.2 CO2 Enrichment 744
2.1.3 Microalgae Physiology 744
2.1.4 Sunlight 744
2.1.5 Habitat 744
2.2 Cultivation System 745
2.2.1 Open Pond System 745
2.2.2 Closed System 747
2.2.3 Semiclosed Systems 749
2.3 Harvesting 750
2.3.1 Flotation 750
2.3.2 Flocculation 750
2.3.3 Centrifugation 751
3 Biofuel from Algae 751
3.1 Biodiesel 751
3.2 Hydrogen Fuel 753
3.3 Biogas 753
3.4 Biomass 754
3.5 Ethanol 754
4 Commercial Prospects and Problems 754
4.1 Prospect 754
4.1.1 Faster 755
4.1.2 Fatter 755
4.1.3 Cheaper 755
4.1.4 Easier/Better 756
4.1.5 Coproduct Fraction Marketing Strategies 756
4.2 Case Study 756
4.3 Problems 757
5 Summary 757
22 Living Machines 760
1 Introduction 760
1.1 Ecological Pollution 760
1.2 Bioremediation Strategies and Advanced Ecologically Engineered Systems 762
2 Living Machines: as Concept in Bioremediation 763
2.1 Advantages of Living Machines 765
2.2 Limitations of Living Machines 766
3 Components of the Living Machines 766
3.1 Microbial Communities 766
3.2 Macro-bio Communities (Animal Diversity) 767
3.3 Photosynthetic Communities 769
3.4 Nutrient and Micro-nutrient Reservoirs 769
4 Types of Living Machines or Restorers 770
4.1 Constructed Wetlands 770
4.2 Lake Restorers 771
4.3 Eco-Restorers 772
4.4 Reedbeds 774
5 Principle Underlying the Construction of Living Machines 774
5.1 Living Machine Design to be Consistent with Ecological Principles 775
5.2 Living Machine Design to Deal with Site-Specific Situation 775
5.3 Living Machine Design to Maintain the Independence of Its Functional Requirements 776
5.4 Living Machine Design to Enhance Efficiency in Energy and Information 777
5.5 Living Machines Design to Acknowledge and Retain it Values and Purposes 777
6 Operationalization of Living Machine Technology 778
6.1 Anaerobic Reactor (Step 1) 779
6.2 Anoxic Reactor (Step 2) 779
6.3 Closed Aerobic Reactor (Step 3) 779
6.4 Open Aerobic Reactors (Step 4) 779
6.5 Clarifier (Step 5) 780
6.6 Ecological Fluidized Beds (Step 6) 780
7 Case Studies of Constructed Living Machine 780
7.1 Sewage Treatment in Cold Climates: South Burlington, Vermont AEES, USA 780
7.2 Environmental Restoration: Flax Pond, Harwich, Massachusetts, USA 782
7.3 Organic Industrial Wastewater Treatment from a Poultry Processing Waste in Coastal Maryland: Using Floating AEES Restorer 783
7.4 Architectural Integration: Oberlin College, Ohio, USA 783
7.5 Tyson Foods at Berlin, Maryland, USA 784
8 Future Prospects of Living Machines 785
8.1 Integration of Industrial and Agricultural Sectors: Proposed Eco-Park in Burlington, Vermont, USA 785
8.2 Aquaculture 786
23 Global Perspective of Anaerobic Treatment of Industrial Wastewater 790
1 Global Perspective of Anaerobic Treatment 790
2 Development of the Anaerobic Processes 792
2.1 History of Anaerobic Treatment 792
2.2 Industrial Wastewater Treatment 794
3 Anaerobic Biochemistry and Microbiology 795
3.1 Hydrolysis 796
3.2 Acidogenesis 796
3.3 Acetogenesis 797
3.4 Methanogenesis 797
4 Comparison Between Aerobic and Anaerobic Processes 798
5 Global Applications of Anaerobic Treatment 801
5.1 The Number of Anaerobic Treatment Plants Installed Worldwide 801
5.2 Types of Anaerobic Treatment Plants Installed Worldwide 802
5.2.1 Anaerobic Contact Process 802
5.2.2 Upflow Anaerobic Sludge Blanket 802
5.2.3 Fixed Film or Anaerobic Filter 802
5.2.4 Fluidized Bed System 802
5.2.5 Hybrid 803
5.2.6 Expanded Granular Sludge Bed and Internal Circulation Systems 803
5.3 Scope of Industrial Applications 803
5.4 The Development of UASB and EGSB 803
6 Applications of Anaerobic Processes for Industrial Wastewater 804
6.1 Anaerobic Fluidized Bed Reactor 804
6.2 Upflow Anaerobic Sludge Blanket Reactor 805
6.3 Upflow Anaerobic Filter 808
6.4 Anaerobic Fixed Bed Reactor 810
6.5 Anaerobic Baffled Reactor 810
6.6 Expanded Granular Sludge Bed Reactor 812
6.7 Hybrid Anaerobic Reactors 813
7 The Future of Anaerobic Treatment 815
8 Conclusion 817
1 Appendix: Conversion Factors for Environmental Engineers 825
1 Constants and Conversion Factors 826
2 Basic and Supplementary Units 866
3 Derived Units and Quantities 867
4 Physical Constants 869
5 Properties of Water 869
Periodic Table of the Elements 869
Index 871
| Erscheint lt. Verlag | 25.6.2010 |
|---|---|
| Reihe/Serie | Handbook of Environmental Engineering | Handbook of Environmental Engineering |
| Zusatzinfo | XXVIII, 867 p. 232 illus. |
| Verlagsort | Totowa |
| Sprache | englisch |
| Themenwelt | Naturwissenschaften ► Biologie ► Ökologie / Naturschutz |
| Naturwissenschaften ► Geowissenschaften | |
| Technik ► Umwelttechnik / Biotechnologie | |
| Schlagworte | Anaerobic biofilm reactor • Animal glue production • Bioengineering • biomass • bioremediation • Biosorption • Biotechnology • Black and grey water treatment • Fermentation • Heavy metal removal • Living machine treatment • Phytoremediation • RBC • Rotating biological contactors • Wastewater treament • Weland treatment |
| ISBN-13 | 9781603270311 / 9781603270311 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich