From Sociology to Computing in Social Networks (eBook)
430 Seiten
Springer Wien (Verlag)
9783709102947 (ISBN)
Title Page
3
Copyright Page
4
Table of Contents
5
List of Contributors
15
Social Networks: A Powerful Model for Serving a Wide Range of Domains 20
1 General Overview 20
2 The need for the Lecture Notes in Social Network Series 21
3 Organization of the Volume
22
Section 1: Mining-based Social Network Methods
22
Section 2: Dynamics in Soial Network Models
24
Section 3: Discovering Structures in Social Networks
24
Section 4: Social Media
25
Section 5: Software Applications
26
Acknowledgements 27
References 27
Part 1 Mining-based Social Network Methods
29
Employing Social Network Construction and Analysis in Web Structure Optimization 30
1 Introduction
31
2 Related Work
33
3 The Proposed Website Analysis Approach
35
3.1 Web Structure Mining
37
3.1.1 Weighted PageRank Based Ranking 37
3.1.2 HITS Based Ranking
39
3.1.3 Social Network Based Ranking
39
3.2 Ranking Pages Based on Web Log Mining
40
3.2.1 Preprocessing:
40
3.2.2 Computing Log Rank Values
41
3.3 Analyzing the Outcome from the First Phase
42
3.3.1 Preprocessing
42
3.3.2 Guideline to Recommendations
43
3.4 Ranking Pages by Employing Web Content Mining 44
3.5 The Relinking Process
45
4 Evaluation of the Proposed Approach
46
5 Summary and Conlusion 49
References
50
Mining Heterogeneous Social Networks for Egocentric Information Abstraction 52
1 Introduction 52
2 Related Works
56
3 Methodology
57
3.1 Ego-based Feature Extraction
58
3.2 Nodes and Paths Sampling
59
3.3 Information Distilling
60
3.4 Abstracted Graph Construction
63
4 Evaluations
63
4.1 Case Study for a Movie Network
64
4.2 Human Study for Crime Identification
69
5 Discussions
73
6 Conclusions
73
References
74
PROG: A Complementary Model to the Social Networks for Mining Forums 76
1 Introduction
76
2 Background
77
3 Post-reply Opinion Graph
79
3.1 Properties
81
3.2 Components
81
4 Measures 84
4.1 Structure-oriented Measures
84
4.2 Opinion-oriented Measures
85
4.3 Time-oriented Measures
87
4.4 Topic-oriented Measures
88
5 Application
90
6 Conclusion and Future Work
95
References
96
Socio-contextual Network Mining for User Assistance in Web-based Knowledge Gathering Tasks
97
1 Introduction
97
2 Related Work
99
3 A Socio-contextual Approach to Contextual User Assistance in WKG
100
3.1 Challenges in WKG
100
3.2 Observing a WKG Task
100
3.3 Semantic Link Network
101
3.4 Types of SLN
101
3.5 Construction of SLN
102
3.6 Restructuring Master SLN
104
3.7 Socio-contextual Mining of Master SLN for Discovering Similar Structures
104
4 Experiments and Evaluation
105
4.1 Experiment
106
4.2 Analysis
107
5 Conclusion
108
Acknowledgements
108
References
109
Integrating Entropy and Closed Freqent Pattern Mining for Social Netword Modelling and Analysis
110
1 Introduction 111
2 Related Works
114
3 Problem Staement
116
4 The Proposed Framework
116
4.1 Feature Extraction Model
117
4.2 Social Network Creation Model
119
4.3 Statistical Analysis Model 119
4.4 Visualization Model
119
5 Dynamic Behavior Analysis
120
6 Experimental Results
122
6.1 Synthetic Dataset
122
6.2 Enron E-mail Dataset
123
6.2.1 Data Processing and Network Extraction
124
6.2.2 Dynamic User Behavior
125
7 Conclusion and Future Work
128
References
128
Part 2 Dynamics in Social Network Models
131
Visualisation of the Dynamics for Computer-mediated Social Networks-concept and Exemplary Cases
132
1 Introduction
133
2 Data Collection and Processing
134
3 Visualisation Approaches - Towards a Representation of Network Dynamics
136
4 Implementation
138
5 Example Cases for the Visualisation Method
139
5.1 CSCL Citation Network
139
5.2 OpenSimulator Network
141
6 Conclusion and Perspectives
146
References
147
EWAS: Modeling Application for Early Detection of Terrorist Threats
148
1 Introduction
148
2 State-of-the-Art 151
3 Problems with Existing Systems
152
4 Functional Requirements 153
5 The Proposed System
154
6 Data Processing Phases
155
6.1 Acquisition Phase 157
6.2 Extration Phase
157
6.3 Information Generation Phase 157
6.4 Investigating Phase
157
6.5 Warining Generation Phase 159
7 EWAS System Architecture
159
7.1 Acquisition Cluster 159
7.2 Extraction Cluster
160
7.3 Investigation System
161
7.4 Warning Generation System
161
7.5 Warning Generation Rule Anatomy
162
8 Testing and Implementation Strategy for EWAS
164
9 Compliance with Requirements
165
10 Experimental Results
165
11 Conclusion and Future Extensions
166
References
168
Complex Dynamics in Information Sharing Networks
170
1 Introduction
170
2 Literature
171
3 Methods and Data
174
4 Results
175
4.1 Usage Trends
176
4.2 Fourier Analysis
179
4.3 Usage Distribution Analysis
181
4.4 Social Network Analysis
182
4.5 Regession Analysis
185
5 Discussion and Conclusion
187
References 188
Harnessing Wisdom of the Crowds Dynamics for Time-dependent Reputation and Ranking
190
1 Introduction
190
2 Social and Term Ranking Based on Reputation
192
2.1 User Reputation
192
2.2 Document Reputation
193
2.3 Time Dynamics
193
2.4 Reputation Ranking: Combining Document and User Reputation
194
2.5 Term-reputation Ranking: Combining Reputation Ranking and Term Ranking
194
3 Experiment Results
195
3.1 Expermental Setup
195
3.2 Documents
197
3.3 Ranking Popular Documents
198
3.4 Ranking Less Popular Documents
200
3.5 Ranking Popular Documents Using Term-reputation
202
4 Related Work
204
5 Conclusion
205
References
206
Part 3 Discovering Structures in Social Networks
208
Detecting Communities in Social Networks Using Local Information
209
1 Introduction
209
2 Related Work
211
3 Preliminaries
213
3.1 Problem Definition
213
3.2 Previous Approaches
214
4 Our Approach
215
4.1 The Local Community Metric L
216
4.2 Local Community Struture Discovery
217
4.3 Iterative Local Expansion
219
5 Experiment Results
220
5.1 Comparing Metric Accuracy
220
5.1.1 The NCAA Football Network
220
5.1.2 The Amazon Co-purchase Network
221
5.2 Interatively Finding Overlapping Communities
224
6 Conclusion and Future Work
224
7 Acknowledgments
225
References
225
Why Do Diffusion Data Not Fit the Logistic Model? A Note on Network Discreteness, Heterogeneity and Anisotropy
227
1 A Brief Historical Sketch
228
2 The Logistic Function
229
3 Empirical Data
231
4 Accounting for Anomalies
232
5 Net Discreteness
232
6 Net Heterogeneity
233
7 Net Anisotropy
235
8 A Test of DHA Indices
237
9 Conclusion
239
References
239
Interlocking Communication Measuring Collaborative Intensity in Social Networks
243
1 Introduction
243
2 Research on Collaboration Networks
244
3 From Communication to Collaboration
245
4 Collaborative Intensity
247
5 Case Studies
248
6 Evaluating Collaborative Intensity
251
7 Filtering
255
8 Centrality in Weighted Networks
259
9 Conclusion
262
References
263
The Strucural Underpinnings of Policy Learning: A Classroom Policy Simulation
265
1 Learning Mechanisms
268
2 Hypothese
270
3 Research Design
270
4 Findings
274
5 Diffusion versus Interaction
278
6 Tie Intensity and Learning
279
7 Discussion
282
8 Conclusion
285
References
286
Part 4 Social Media
290
A Journey to the Core of the Blogosphere
291
1 Introduction
291
1.1 The Blogosphere
291
1.2 Rationale
292
2 Data Set Acquisition
293
2.1 Blog Seeds
293
Untitled 294
2.2 Using the Blogroll
294
2.3 Crawling Blogroll Links
294
2.4 Crawling the Data Sets
295
3 Core Model
296
3.1 Notations
296
3.2 Existing Core Models
296
3.3 Core Models for Directed Graphs
297
3.4 The In-core Algorithm
298
4 Core Analysis
298
4.1 Comparison to Random Networks
298
4.2 Comparing the Data Sets
302
4.3 Comparison with the Core/Periphery Model 304
5 Identifying A-List Blogs
304
5.1 Constraints
304
5.2 Structural Analysis
305
5.3 Core Independency
305
6 Conclusion
309
References
310
Social Physics of the Blogosphere Capturing, Analyzing and Presenting Interdependencies within a Single Framework
311
1 Introduction
312
1.1 The Bigger Picture
312
1.2 Research Rationale 313
1.3 Research Overview and Chapter Arrangement
314
2 Related Work
314
3 Framework
316
4 Extraction: Data Elements and Crawler Implementation
318
4.1 Information Elements
318
4.2 Crawler Action-Sequence
320
4.3 Recognizing Weblogs
321
4.4 Recognizing Feeds
322
4.5 Storing Crawled Data
322
4.6 Refreshing Period of Crawled Data
323
5 Analysis: Integration of Proprietary and Existing Research Efforts
324
5.1 Network Analysis
324
5.2 Content Analysis
326
6 Visualization
327
7 Conclusion
328
References
329
Twitmographics: Learning the Emergent Properties of the Twitter Community
332
1 Introduction
332
2 Prior Work
333
3 Proposed Framework
336
3.1 Features of MessageStats
336
3.2 Features of UserDemographics
338
3.3 Message Harvesting Process
340
4 Validation Results on Synthesized Attributes
341
5 Case Studies
344
5.1 Case 1: "Iran Election"
345
5.2 Case 2: "iPhone"
346
5.3 Case 3: "Obama" 348
6 Conclusion
349
References
350
Dissecting Twitter: A Review on Current Microblogging Research and Lessons from Related Fields 352
1 Introduction
352
2 Exploratory Studies on Twitter
354
2.1 Twitter's Properties and Emergent Features
354
2.2 Message Addressivety and Forwarding on Twitter
356
3 Information Spread and Self-organization on Twitter and Related Disciplines
357
3.1 Twitter in Crisis and Convergence
357
3.2 Pattern Detection and User/Message Clustering Twitter
359
3.3 Related Literature: On Viral InFormation Spread and Memetics
360
3.4 Related Literature: Approaches to Trend Analysis from Existing Blogs and Social Media
361
4 Twitter for Sentiment and Opinion Analysis
362
4.1 Twitter to Gauge User Interest
362
4.2 Twitter for Opinion Analysis: Case Study in Political Debates
362
4.3 Twitter for Marketing and Brand Setiment Analysis
363
5 Human Factors on Twitter
364
5.1 User Intention for Participating in Twitter
364
5.2 Best Practices and Typical Usage Scenarios
365
5.3 Social Information Needs and Wants
365
6 Twitter in Computer-based Visualizations 365
6.1 Twitter: Visualization and CHI studies
366
6.2 Twitter Web-based Visualization Tools
367
7 Comparison
369
8 Conclusion
369
References
370
Part 5 Software Applications
372
Unleash the CSS-Factor A Social Capital Approach to the Benefits and Challenges of Corporate Social Software
373
1 Introduction
374
2 The intranet (R)Evolution
375
3 E=MC2
376
4 Corporate Social Software - A secret Weapon?
377
5 Benefits versus Challenges of CSS-Evidence from Inside the Firewall
379
6 Conclusion
381
References
383
Extending SQL to Support Privacy Policies
385
1 Introduction
386
1.1 Requirements for Extension
386
1.2 User Privacy Requirements
387
1.3 Organization
387
2 Extending SQL to Support Privacy Policies
388
2.1 Overview of CREATE TABLE
388
2.2 Extended CREATE TABLE
388
2.3 Overview of GRANT
389
2.4 Modified GRANT
390
2.5 Overview of REVOKE
391
2.6 Modified REVOKE
392
3 Model Semantics
393
3.1 Privacy Catalogues
393
3.2 Extended Data Manipulation Language
394
4 Complexity Analysis
396
4.1 Implenentation
397
5 Related Work
399
6 Conclusion
400
References
400
nCompass Service Oriented Architecture for Tacit Collaboration Services
402
1 Introduction
402
2 Objectives
403
3 Technical Foundations
404
3.1 Oculus nSpace
404
3.2 Service Oriented Archiecture (SOA)
404
3.3 Tacit Collaboration Approach
405
4 Scenario Illustrating Use and Impact
406
5 nCompass
407
6 nCompass Core Services
409
6.1 Analysis Log Service (ALS)
409
6.1.1 Analysis Log Events (ALEs)
409
6.2 Content Management Service (CMS)
410
6.3 Authention Management Service (AMS)
412
6.4 Group Management Service (GMS)
413
7 Experiments and Results
414
7.1 Ease of Integration
414
7.2 Impact on Experiment Design
415
7.3 Tacit Collaboration Through Context-sharing
416
8 Related Work
417
9 Conclusion and Future Work
418
Acknowledgments
418
References
419
SOA Security Aspects in Web-based Architectural Design
421
1 Introduction
422
1.1 CRUD Operations
423
1.2 Security Using SOA
424
1.3 Security Problems
424
2 WS-Security in CRUD operations
425
3 Proposed Architecture
425
3.1 Interface between Nurse and Application
425
3.2 Interface betwrrn Doctor and Application
426
3.3 Swcurity Measures for an Intruder
426
3.4 Security Implementation at Nurse's End
426
3.5 Security Implementation at the Doctor's End
427
3.6 Prevention from Replay Attack
430
4 Experiments and Results
431
4.1 Security Scenariors
432
5 Related Work
433
6 Conclusion and Future Work
435
References
435
| Erscheint lt. Verlag | 26.8.2010 |
|---|---|
| Reihe/Serie | Lecture Notes in Social Networks | Lecture Notes in Social Networks |
| Zusatzinfo | XIX, 430 p. |
| Verlagsort | Vienna |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Web / Internet |
| Naturwissenschaften ► Physik / Astronomie | |
| Technik | |
| Schlagworte | Calculus • Computer • Data Mining • machine learning • Modeling • multiagen based simulation • Optimization • pattern mining • Social Networking • Visualization • Web communities |
| ISBN-13 | 9783709102947 / 9783709102947 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich