Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Bayesian networks. A probabilistic model for chronic obstructive pulmonary disease diagnosis and phenotyping (eBook)

(Autor)

eBook Download: PDF
2019 | 1. Auflage
GRIN Verlag
978-3-346-05104-2 (ISBN)

Lese- und Medienproben

Bayesian networks. A probabilistic model for chronic obstructive pulmonary disease diagnosis and phenotyping - Amos Olwendo
Systemvoraussetzungen
36,99 inkl. MwSt
(CHF 36,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Masterarbeit aus dem Jahr 2014 im Fachbereich Medizin - Sonstiges, Note: 17, , Sprache: Deutsch, Abstract: This thesis provides a model for diagnosing and classifying COPD based on phenotypes; General COPD, Chronic bronchitis, Emphysema, and the Asthmatic COPD using a Bayesian network (BN). A BN is a probabilistic modelling tool composed of random variables and the relationships of such variables is based on probabilities that maximize certain outcomes. We validated our BN model using a neural network model based on the Levenberg- Marquardt (LM) algorithm. Results show that the BN model achieved an overall classification of 98.75 % for our test cases. Furthermore, F1 score results also show that the BN is a better model for COPD classification in comparison to the LM algorithm.

The World Health Organization (WHO) lists COPD as the fourth leading cause of the death worldwide yet the disease is preventable. Smoking of tobacco products, alpha-1-antitrypsin (AAt), and air pollution are the major risk factors associated with the development and progression of this disease. COPD is usually either misdiagnosed or under-diagnosed due to a number of factors including the slow progression of the development of its symptoms. Besides, differential diagnosis is usually applied during diagnosis because differentiating COPD patients from those with say chronic Asthma may not be an easy task. Previous researchers have used pulmonary function test results to diagnose COPD.
Erscheint lt. Verlag 6.11.2019
Verlagsort München
Sprache deutsch
Themenwelt Medizin / Pharmazie
Schlagworte Bayesian Network • COPD • Levenberg- Marquardt algorithm
ISBN-10 3-346-05104-8 / 3346051048
ISBN-13 978-3-346-05104-2 / 9783346051042
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Martin Jöhr

eBook Download (2023)
Urban & Fischer Verlag - Fachbücher
CHF 53,70