Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Arithmetical Aspects of the Large Sieve Inequality - Olivier Ramare, D.S. Ramana

Arithmetical Aspects of the Large Sieve Inequality

Buch | Softcover
210 Seiten
2009
Hindustan Book Agency (Verlag)
978-81-85931-90-6 (ISBN)
CHF 59,95 inkl. MwSt
  • Titel nicht im Sortiment
  • Artikel merken
Elaborating on a series of lectures given at the Harish-Chandra Research Institute, this title takes the reader through a journey on the arithmetical sides of the large sieve inequality when applied to the Farey dissection. It also presents an extension of the Brun-Tichmarsh Theorem.
This book is an elaboration of a series of lectures given at the Harish-Chandra Research Institute. The reader will be taken through a journey on the arithmetical sides of the large sieve inequality when applied to the Farey dissection. This will reveal connections between this inequality, the Selberg sieve and other less used notions like pseudo-characters and the $/Lambda_Q$-function, as well as extend these theories. One of the leading themes of these notes is the notion of so-called/emph{local models} that throws a unifying light on the subject. As examples and applications, the authors present, among other things, an extension of the Brun-Tichmarsh Theorem, a new proof of Linnik's Theorem on quadratic residues and an equally novel one of the Vinogradov three primes Theorem; the authors also consider the problem of small prime gaps, of sums of two squarefree numbers and several other ones, some of them being new, like a sharp upper bound for the number of twin primes $p$ that are such that $p 1$ is squarefree. In the end the problem of equality in the large sieve inequality is considered and several results in this area are also proved.

Introduction.; 1. The large sieve inequality; 2. An extension of the classical arithmetical theory of the large sieve.; 3. Some general remarks on arithmetical functions; 4. A Geometric interpretation; 5. Further arithmetical applications; 6. The Siegel zero effect; 7. A weighted hermitian inequality; 8. A first use of local models; 9. Twin primes and local models; 10. The three primes theorem; 11. The Selberg sieve; 12. Fourier expansion of sieve weights; 13. The Selberg sieve for sequences; 14. An overview; 15. Some weighted sequences; 16. Small gaps between primes; 17. Approximating by a local model; 18. Selecting other sets of moduli; 19. Sums of two squarefree numbers; 20. On large sieve equality.; Appendix. Notations. References. Index.

Erscheint lt. Verlag 30.1.2009
Reihe/Serie HRI Lecture Notes in Mathematics
Verlagsort New Delhi
Sprache englisch
Gewicht 355 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 81-85931-90-9 / 8185931909
ISBN-13 978-81-85931-90-6 / 9788185931906
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Mengeneigenschaften im Muster der Universellen Gleichmäßigkeit im …

von Matthias Alexander Pauqué

Buch | Spiralbindung (2025)
White, J (Verlag)
CHF 208,55
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
CHF 27,90