Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Graphical Models, Exponential Families, and Variational Inference - Martin J. Wainwright, Michael I. Jordan

Graphical Models, Exponential Families, and Variational Inference

Buch | Softcover
324 Seiten
2008
now publishers Inc (Verlag)
978-1-60198-184-4 (ISBN)
CHF 224,85 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning.

Many problems that arise in specific instances-including the key problems of computing marginals and modes of probability distributions-are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, this book develops general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. It describes how a wide variety of algorithms- among them sum-product, cluster variational methods, expectation-propagation, mean field methods, and max-product-can all be understood in terms of exact or approximate forms of these variational representations.

The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.

1: Introduction 2: Background 3: Graphical models as exponential families 4: Sum product, Bethe-Kikuchi, and expectation-propagation 5: Mean field methods 6: Variational methods in parameter estimation 7: Convex relaxations and upper bounds 8: Max-product and LP relaxations 9: Moment matrices and conic relaxations 10: Discussion. A: Background Material B: Proofs for exponential families and duality C: Variational principles for multivariate Gaussians D: Clustering and augmented hypergraphs E: Miscellaneous results References

Erscheint lt. Verlag 15.12.2008
Reihe/Serie Foundations and Trends® in Machine Learning
Verlagsort Hanover
Sprache englisch
Maße 156 x 234 mm
Gewicht 457 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-60198-184-8 / 1601981848
ISBN-13 978-1-60198-184-4 / 9781601981844
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20