Index Theory, Eta Forms, and Deligne Cohomology
Seiten
2009
American Mathematical Society (Verlag)
978-0-8218-4284-3 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-4284-3 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Sets up a language to deal with Dirac operators on manifolds with corners of arbitrary co-dimension. This book develops a theory of boundary reductions, introducing the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator.
This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary co-dimension. In particular the author develops a precise theory of boundary reductions. The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.
This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary co-dimension. In particular the author develops a precise theory of boundary reductions. The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.
| Erscheint lt. Verlag | 30.3.2009 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 212 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| ISBN-10 | 0-8218-4284-6 / 0821842846 |
| ISBN-13 | 978-0-8218-4284-3 / 9780821842843 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Anwendungen in Natur und Technik
Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 55,95