Abstract Homomorphisms of Split Kac-Moody Groups
Seiten
2009
American Mathematical Society (Verlag)
978-0-8218-4258-4 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-4258-4 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Discusses isomorphism problem for split Kac-Moody groups over arbitrary fields. This book offers a complete understanding of the structure of the automorphism group of Kac-Moody groups over ground fields of characteristic 0.
This work is devoted to the isomorphism problem for split Kac-Moody groups over arbitrary fields. This problem turns out to be a special case of a more general problem, which consists in determining homomorphisms of isotropic semi simple algebraic groups to Kac-Moody groups, whose image is bounded. Since Kac-Moody groups possess natural actions on twin buildings, and since their bounded subgroups can be characterized by fixed point properties for these actions, the latter is actually a rigidity problem for algebraic group actions on twin buildings. The author establishes some partial rigidity results, which we use to prove an isomorphism theorem for Kac-Moody groups over arbitrary fields of cardinality at least 4. In particular, he obtains a detailed description of automorphisms of Kac-Moody groups. This provides a complete understanding of the structure of the automorphism group of Kac-Moody groups over ground fields of characteristic 0. The same arguments allow to treat unitary forms of complex Kac-Moody groups. In particular, the author shows that the Hausdorff topology that these groups carry is an invariant of the abstract group structure. Finally, the author proves the non-existence of co central homomorphisms of Kac-Moody groups of indefinite type over infinite fields with finite-dimensional target. This provides a partial solution to the linearity problem for Kac-Moody groups.
This work is devoted to the isomorphism problem for split Kac-Moody groups over arbitrary fields. This problem turns out to be a special case of a more general problem, which consists in determining homomorphisms of isotropic semi simple algebraic groups to Kac-Moody groups, whose image is bounded. Since Kac-Moody groups possess natural actions on twin buildings, and since their bounded subgroups can be characterized by fixed point properties for these actions, the latter is actually a rigidity problem for algebraic group actions on twin buildings. The author establishes some partial rigidity results, which we use to prove an isomorphism theorem for Kac-Moody groups over arbitrary fields of cardinality at least 4. In particular, he obtains a detailed description of automorphisms of Kac-Moody groups. This provides a complete understanding of the structure of the automorphism group of Kac-Moody groups over ground fields of characteristic 0. The same arguments allow to treat unitary forms of complex Kac-Moody groups. In particular, the author shows that the Hausdorff topology that these groups carry is an invariant of the abstract group structure. Finally, the author proves the non-existence of co central homomorphisms of Kac-Moody groups of indefinite type over infinite fields with finite-dimensional target. This provides a partial solution to the linearity problem for Kac-Moody groups.
| Erscheint lt. Verlag | 30.3.2009 |
|---|---|
| Reihe/Serie | Memoirs of the American Mathematical Society |
| Verlagsort | Providence |
| Sprache | englisch |
| Gewicht | 177 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
| ISBN-10 | 0-8218-4258-7 / 0821842587 |
| ISBN-13 | 978-0-8218-4258-4 / 9780821842584 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
Anwendungen in Natur und Technik
Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 55,95