Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Functions of One Complex Variable - John B. Conway

Functions of One Complex Variable

(Autor)

Buch | Softcover
326 Seiten
1973 | Softcover reprint of the original 1st ed. 1973
Springer-Verlag New York Inc.
978-0-387-90062-9 (ISBN)
CHF 119,75 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - I) arguments. The actual pre- requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ- entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe- matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.

I. The Complex Number System.- 1. The real numbers.- 2. The field of complex numbers.- 3. The complex plane.- 4. Polar representation and roots of complex numbers.- 5. Lines and half planes in the complex plane.- 6. The extended plane and its spherical representation.- II. Metric Spaces and the Topology of C.- 1. Definition and examples of metric spaces.- 2. Connectedness.- 3. Sequences and completeness.- 4. Compactness.- 5. Continuity.- 6. Uniform convergence.- III. Elementary Properties and Examples of Analytic Functions.- 1. Power series.- 2. Analytic functions.- 3. Analytic functions as mappings, Mobius transformations.- IV. Complex Integration.- 1. Riemann-Stieltjes integrals.- 2. Power series representation of analytic functions.- 3. Zeros of an analytic function.- 4. Cauchy's Theorem.- 5. The index of a closed curve.- 6. Cauchy's Integral Formula.- 7. Counting zeros; the Open Mapping Theorem.- 8. Goursat's Theorem.- V. Singularities.- 1. Classification of singularities.- 2. Residues.- 3. The Argument Principle.- VI. The Maximum Modules Theorem.- 1. The Maximum Principle.- 2. Schwarz's Lemma.- 3. Convex functions and Hadamard's Three Circles Theorem.- 4. Phragmen-Lindelof Theorem.- VII. Compactness and Convergence in the Space of Analytic Functions.- 1. The space of continuous functions C(G,?).- 2. Spaces of analytic functions.- 3. Spaces of meromorphic functions.- 4. The Riemann Mapping Theorem.- 5. Weierstrass Factorization Theorem.- 6. Factorization of the sine function.- 7. The gamma function.- 8. The Riemann zeta function.- VIII. Runge's Theorem.- 1. Runge's Theorem.- 2. Another version of Cauchy's Theorem.- 3. Simple connectedness.- 4. Mittag-Leffler's Theorem.- IX. Analytic Continuation and Riemann Surfaces.- 1. Schwarz Reflection Principle.- 2. Analytic Continuation Along A Path.- 3. Mondromy Theorem.- 4. Topological Spaces and Neighborhood Systems.- 5. The Sheaf of Germs of Analytic Functions on an Open Set.- 6. Analytic Manifolds.- 7. Covering spaces.- X. Harmonic Functions.- 1. Basic Properties of harmonic functions.- 2. Harmonic functions on a disk.- 3. Subharmonic and superharmonic functions.- 4. The Dirichlet Problem.- 5. Green's Functions.- XI. Entire Functions.- 1. Jensen's Formula.- 2. The genus and order of an entire function.- 3. Hadamard Factorization Theorem.- XII. The Range of an Analytic Function.- 1. Bloch's Theorem.- 2. The Little Picard Theorem.- 3. Schottky's Theorem.- 4. The Great Picard Theorem.- Appendix: Calculus for Complex Valued Functions on an Interval.- List of Symbols.

Erscheint lt. Verlag 16.10.1973
Reihe/Serie Graduate Texts in Mathematics ; 11
Zusatzinfo biography
Verlagsort New York, NY
Sprache englisch
Maße 152 x 229 mm
Gewicht 470 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-387-90062-4 / 0387900624
ISBN-13 978-0-387-90062-9 / 9780387900629
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95