Functions of One Complex Variable
Springer-Verlag New York Inc.
978-0-387-90062-9 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
I. The Complex Number System.- 1. The real numbers.- 2. The field of complex numbers.- 3. The complex plane.- 4. Polar representation and roots of complex numbers.- 5. Lines and half planes in the complex plane.- 6. The extended plane and its spherical representation.- II. Metric Spaces and the Topology of C.- 1. Definition and examples of metric spaces.- 2. Connectedness.- 3. Sequences and completeness.- 4. Compactness.- 5. Continuity.- 6. Uniform convergence.- III. Elementary Properties and Examples of Analytic Functions.- 1. Power series.- 2. Analytic functions.- 3. Analytic functions as mappings, Mobius transformations.- IV. Complex Integration.- 1. Riemann-Stieltjes integrals.- 2. Power series representation of analytic functions.- 3. Zeros of an analytic function.- 4. Cauchy's Theorem.- 5. The index of a closed curve.- 6. Cauchy's Integral Formula.- 7. Counting zeros; the Open Mapping Theorem.- 8. Goursat's Theorem.- V. Singularities.- 1. Classification of singularities.- 2. Residues.- 3. The Argument Principle.- VI. The Maximum Modules Theorem.- 1. The Maximum Principle.- 2. Schwarz's Lemma.- 3. Convex functions and Hadamard's Three Circles Theorem.- 4. Phragmen-Lindelof Theorem.- VII. Compactness and Convergence in the Space of Analytic Functions.- 1. The space of continuous functions C(G,?).- 2. Spaces of analytic functions.- 3. Spaces of meromorphic functions.- 4. The Riemann Mapping Theorem.- 5. Weierstrass Factorization Theorem.- 6. Factorization of the sine function.- 7. The gamma function.- 8. The Riemann zeta function.- VIII. Runge's Theorem.- 1. Runge's Theorem.- 2. Another version of Cauchy's Theorem.- 3. Simple connectedness.- 4. Mittag-Leffler's Theorem.- IX. Analytic Continuation and Riemann Surfaces.- 1. Schwarz Reflection Principle.- 2. Analytic Continuation Along A Path.- 3. Mondromy Theorem.- 4. Topological Spaces and Neighborhood Systems.- 5. The Sheaf of Germs of Analytic Functions on an Open Set.- 6. Analytic Manifolds.- 7. Covering spaces.- X. Harmonic Functions.- 1. Basic Properties of harmonic functions.- 2. Harmonic functions on a disk.- 3. Subharmonic and superharmonic functions.- 4. The Dirichlet Problem.- 5. Green's Functions.- XI. Entire Functions.- 1. Jensen's Formula.- 2. The genus and order of an entire function.- 3. Hadamard Factorization Theorem.- XII. The Range of an Analytic Function.- 1. Bloch's Theorem.- 2. The Little Picard Theorem.- 3. Schottky's Theorem.- 4. The Great Picard Theorem.- Appendix: Calculus for Complex Valued Functions on an Interval.- List of Symbols.
| Erscheint lt. Verlag | 16.10.1973 |
|---|---|
| Reihe/Serie | Graduate Texts in Mathematics ; 11 |
| Zusatzinfo | biography |
| Verlagsort | New York, NY |
| Sprache | englisch |
| Maße | 152 x 229 mm |
| Gewicht | 470 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-10 | 0-387-90062-4 / 0387900624 |
| ISBN-13 | 978-0-387-90062-9 / 9780387900629 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich