Kolmogorov Operators in Spaces of Continuous Functions and Equations for Measures
Seiten
2008
|
2009 ed.
Scuola Normale Superiore (Verlag)
9788876423369 (ISBN)
Scuola Normale Superiore (Verlag)
9788876423369 (ISBN)
- Titel z.Zt. nicht lieferbar
- Portofrei ab CHF 40
- Auch auf Rechnung
- Artikel merken
The book is devoted to study the relationships between Stochastic Partial Differential Equations and the associated Kolmogorov operator in spaces of continuous functions.
In the first part, the theory of a weak convergence of functions is developed in order to give general results about Markov semigroups and their generator.
In the second part, concrete models of Markov semigroups deriving from Stochastic PDEs are studied. In particular, Ornstein-Uhlenbeck, reaction-diffusion and Burgers equations have been considered. For each case the transition semigroup and its infinitesimal generator have been investigated in a suitable space of continuous functions.
The main results show that the set of exponential functions provides a core for the Kolmogorov operator. As a consequence, the uniqueness of the Kolmogorov equation for measures has been proved.
In the first part, the theory of a weak convergence of functions is developed in order to give general results about Markov semigroups and their generator.
In the second part, concrete models of Markov semigroups deriving from Stochastic PDEs are studied. In particular, Ornstein-Uhlenbeck, reaction-diffusion and Burgers equations have been considered. For each case the transition semigroup and its infinitesimal generator have been investigated in a suitable space of continuous functions.
The main results show that the set of exponential functions provides a core for the Kolmogorov operator. As a consequence, the uniqueness of the Kolmogorov equation for measures has been proved.
1. Introduction.- 2. Preliminaries.- 3. Measure valued equations for stochastically continuous Markov semigroups.- 4. Measure equations for Ornstein-Uhlenbeck operators.- 5. Bounded perturbations of Ornstein-Uhlenbeck operators.- 6. Lipschitz perturbations of Ornstein-Uhlenbeck operators.- 7. The reaction-diffusion operator.- 8. The Burgers equation.- Bibliography.- Index.
| Erscheint lt. Verlag | 29.12.2008 |
|---|---|
| Reihe/Serie | Publications of the Scuola Normale Superiore ; 10 | Theses (Scuola Normale Superiore) |
| Zusatzinfo | 130 p. |
| Verlagsort | Pisa |
| Sprache | englisch |
| Maße | 150 x 240 mm |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| ISBN-13 | 9788876423369 / 9788876423369 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90