Numerical solution of Variational Inequalities by Adaptive Finite Elements
Seiten
2008
Vieweg & Teubner (Verlag)
978-3-8348-0664-2 (ISBN)
Vieweg & Teubner (Verlag)
978-3-8348-0664-2 (ISBN)
This work describes a general approach to a posteriori error estimation and adaptive mesh design for ?nite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a - merically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored - cording to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities. F¨ ur Alexandra, Katharina und Merle Contents 1 Introduction 1 2 Models in elasto-plasticity 13 2. 1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . 14 2. 2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 The dual-weighted-residual method 23 3. 1 A model situation in plasticity . . . . . . . . . . . . . . . . . . 24 3. 2 A posteriori error estimate . . . . . . . . . . . . . . . . . . . . . 25 3. 3 Evaluation of a posteriori error bounds . . . . . . . . . . . . . . 26 3. 4 Strategies for mesh adaptation . . . . . . . . . . . . . . . . . . 28 3. 5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Extensions to stabilised schemes 33 4. 1 Discretisation for themembrane-problem . . . . . . . . . . . . 35 4. 2 A posteriori error analysis . . . . . . . . . . . . . . . . . . . . . 37 4. 3 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Franz-Theo Suttmeier is a professor of Scientific Computing at the Institute of Applied Analysis and Numerics at the University of Siegen.
Models in elasto-plasticity.- The dual-weighted-residual method.- Extensions to stabilised schemes.- Obstacle problem.- Signorini's problem.- Strang's problem.- General concept.- Lagrangian formalism.- Obstacle problem revisited.- Variational inequalities of second kind.- Time-dependent problems.- Applications.- Iterative Algorithms.- Conclusion.
| Erscheint lt. Verlag | 28.8.2008 |
|---|---|
| Reihe/Serie | Advances in Numerical Mathematics |
| Zusatzinfo | X, 161 p. |
| Verlagsort | Wiesbaden |
| Sprache | englisch |
| Maße | 148 x 210 mm |
| Gewicht | 260 g |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
| Schlagworte | Adaptivität • A Posteriori Fehlerschätzung • A Priori Fehlerschätzung • Equation • Finite • Finite-Elemente-Methode • Finite-Elemente-Methode (FEM) • Finite Element Method • Mathematics • Ungleichungen • Variationsungleichungen |
| ISBN-10 | 3-8348-0664-1 / 3834806641 |
| ISBN-13 | 978-3-8348-0664-2 / 9783834806642 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Festigkeits- und Verformungslehre, Baudynamik, Wärmeübertragung, …
Buch | Hardcover (2025)
De Gruyter Oldenbourg (Verlag)
CHF 125,90