Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Classifying Spaces of Degenerating Polarized Hodge Structures - Kazuya Kato, Sampei Usui

Classifying Spaces of Degenerating Polarized Hodge Structures

Buch | Softcover
352 Seiten
2008
Princeton University Press (Verlag)
978-0-691-13822-0 (ISBN)
CHF 159,95 inkl. MwSt
  • Lieferbar (Termin unbekannt)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. This book realizes this by creating a logarithmic Hodge theory. It uses the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure.
In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic.

Kazuya Kato is professor of mathematics at Kyoto University. Sampei Usui is professor of mathematics at Osaka University.

*Frontmatter, pg. i*Contents, pg. vii*Introduction, pg. 1*Chapter 0. Overview, pg. 7*Chapter 1. Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits, pg. 70*Chapter 2. Logarithmic Hodge Structures, pg. 75*Chapter 3. Strong Topology and Logarithmic Manifolds, pg. 107*Chapter 4. Main Results, pg. 146*Chapter 5. Fundamental Diagram, pg. 157*Chapter 6. The Map psi:D#val --> DSL(2), pg. 175*Chapter 7. Proof of Theorem A, pg. 205*Chapter 8. Proof of Theorem B, pg. 226*Chapter 9. b-Spaces, pg. 244*Chapter 10. Local Structures of DSL(2) and GAMMA/DbSL(2),<=1, pg. 251*Chapter 11. Moduli of PLH with Coefficients, pg. 271*Chapter 12. Examples and Problems, pg. 277*Appendix, pg. 307*References, pg. 315*List of Symbols, pg. 321*Index, pg. 331

Erscheint lt. Verlag 7.12.2008
Reihe/Serie Annals of Mathematics Studies
Zusatzinfo 2 line illus.
Verlagsort New Jersey
Sprache englisch
Maße 152 x 235 mm
Gewicht 595 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-691-13822-2 / 0691138222
ISBN-13 978-0-691-13822-0 / 9780691138220
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich