Lecture Notes In Applied Differential Equations Of Mathematical Physics
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-281-457-9 (ISBN)
Functional analysis is a well-established powerful method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and statistical turbulence. This book presents a unique, modern treatment of solutions to fractional random differential equations in mathematical physics. It follows an analytic approach in applied functional analysis for functional integration in quantum physics and stochastic Langevin-turbulent partial differential equations.
Elementary Aspects of Potential Theory in Mathematical Physics; Scattering Theory in Non-relativistic One-Body Short-Range Quantum Mechanics: Moller Wave Operators and Asymptotic Completeness; On the Hilbert Space Integration Method for the Wave Equation and Some Applications to Wave Physics; Non-linear Diffusion and Wave Damped Propagation: Weak Solutions and Statistical Turbulence Behavior; Domains of Bosonic Functional Integrals and Some Applications to the Mathematical Physics of Path Integrals and String Theory; Basic Integral Representations in Mathematical Analysis of Euclidean Functional Integrals; Non-linear Diffusion in RD and in Hilbert Spaces, a Path Integral Study; On the Ergodic Theorem; Some Comments on Sampling of Ergodic Process, an Ergodic Theorem and Turbulent Pressure Fluctuations.
| Erscheint lt. Verlag | 19.10.2008 |
|---|---|
| Verlagsort | Singapore |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
| Naturwissenschaften ► Physik / Astronomie | |
| ISBN-10 | 981-281-457-4 / 9812814574 |
| ISBN-13 | 978-981-281-457-9 / 9789812814579 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich