Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
DNA Interactions with Polymers and Surfactants -

DNA Interactions with Polymers and Surfactants

Rita Dias, Björn Lindman (Herausgeber)

Buch | Hardcover
440 Seiten
2008
Wiley-Interscience (Verlag)
978-0-470-25818-7 (ISBN)
CHF 309,95 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
DNA Interactions with Polymers and Surfactants provides a broad overview of the interaction of DNA with cosolutes in both bulk solution and at interfaces. It provides the basis for understanding the factors leading to complexation between DNA and different cosolutes as well as DNA adsorption at different interfaces.
Due to the potential benefits of biotechnology, interest in the interaction between DNA and surfactants and polymers has become increasingly significant. Now, DNA Interactions with Polymers and Surfactants provides an extensive, up-to-date overview of the subject, giving readers a basis for understanding the factors leading to complexation between DNA and different cosolutes, including metal ions, polyelectrolytes, spermine, spermidine, surfactants and lipids, and proteins.

Rita S. Dias, PhD, is a postdoctoral scientist in the Department of Physical Chemistry at Lund University, Sweden. Her current research involves the control of DNA condensation using surfactant mixtures and Monte Carlo simulations on the compaction of DNA and interaction of macromolecules with coarse-grained lipid membranes. Björn Lindman, PhD, has served as Full Professor at Lund University for the past three decades. Dr. Lindman's contributions have included the determination of the structure of microemulsions, the development of novel delivery systems for pharmaceuticals, and new systems for eliminating adhesions in surgery. He was the first to establish phase diagrams for mixed polymer-surfactant solutions as well as the bicontinuity of microemulsions. Dr. Lindman is the author of hundreds of scientific publications and has coauthored or edited several books, including Surfactants and Polymers in Aqueous Solution, Second Edition (Wiley).

Preface xiii

Contributors xv

1 Polyelectrolytes. Physicochemical Aspects and Biological Significance 1
Magnus Ullner

1.1 Introduction 1

1.2 Polyelectrolytes and Biological Function 1

1.3 Electrostatic Interactions 3

1.3.1 Ion Distributions and the Poisson–Boltzmann Equation 3

1.3.2 Debye–H€uckel Theory 9

1.4 Solution Properties 13

1.5 Flexibility 17

1.5.1 The Concept of Persistence Length 17

1.5.2 Interactions and the Separation of Length Scales 23

1.5.3 Polyelectrolyte Behavior: Electrostatic Persistence Length 26

1.5.4 DNA Persistence Length 29

References 31

2 Solution Behavior of Nucleic Acids 41
Rita S. Dias

2.1 Biological Function of Nucleic Acids 41

2.2 Discovery of DNA 41

2.3 Structure of Nucleic Acids 43

2.3.1 DNA 43

2.3.2 RNA 47

2.3.3 Analogues of Nucleic Acids 48

2.4 Nuclei Acids Nanostructures 48

2.4.1 DNA 48

2.4.2 RNA 50

2.5 Behavior of DNA in Solution 51

2.5.1 Ionization Equilibrium 51

2.5.2 Flexibility of Nucleic Acids 51

2.6 Melting of Double-Stranded DNA 52

2.6.1 Effect of Base Composition 53

2.6.2 Effect of Ionic Strength 53

2.6.3 Effect of pH 53

2.6.4 Dependence on DNA Chain Length 54

2.6.5 Dependence on DNA Concentration 54

Acknowledgments 55

References 55

3 Single DNA Molecules: Compaction and Decompaction 59
Anatoly A. Zinchenko, Olga A. Pyshkina, Andrey V. Lezov, Vladimir G. Sergeyev, and Kenichi Yoshikawa

3.1 Introduction 59

3.2 Condensation and Compaction of DNA by Surfactants 60

3.2.1 Linear DNA Condensation/Compaction by Positively Charged Surfactants 60

3.2.2 Compaction of Plasmid DNA with Surfactants 63

3.2.3 Non-ionic Surfactants 64

3.2.4 Zwitterionic Surfactants 64

3.2.5 Decompaction of DNA–Surfactant Complex 65

3.3 DNA Condensation by Cationic Liposomes 65

3.4 DNA Compaction and Decompaction by Multivalent Cations 74

3.5 DNA Compaction by Polycations 77

3.6 Compaction of DNA in a Crowded Environment of Neutral Polymer 81

3.7 Conclusion 82

References 82

4 Interaction of DNA with Surfactants in Solution 89
Rita S. Dias, Kenneth Dawson, and Maria G. Miguel

4.1 Introduction 89

4.1.1 Surfactants 89

4.1.2 Polymer–Surfactant Interactions 93

4.1.3 Polyelectrolyte–Oppositely Charged Surfactant Interactions 94

4.1.4 DNA–Surfactant Interactions 95

4.2 DNA–Cationic Surfactant Interactions 96

4.2.1 Solution Behavior 96

4.2.2 Effect of the Surfactant Chain Length 99

4.2.3 Effect of the Surfactant Head-group 101

4.2.4 Structure of DNA–Surfactant Complexes 102

4.2.5 DNA Is an Amphiphilic Polyelectrolyte 105

4.3 DNA Covalent Gels and Their Interaction with Surfactants 106

4.4 Applications 108

4.4.1 Control of DNA Compaction/Decompaction 108

4.4.2 Purification 110

4.4.3 Gene Transfection 110

Acknowledgments 111

References 111

5 Interaction of DNA with Cationic Polymers 119
Eric Raspaud, Adriana C. Toma, Francoise Livolant, and Joachim R€adler

5.1 Introduction 119

5.2 Theory of DNA Interacting with Polycations 120

5.2.1 Manning Condensation 120

5.2.2 Counterion Release 121

5.2.3 Short-Range Attractive Force due to Ion Correlations 121

5.2.4 Phase Diagrams of Condensed DNA–Polycation Phases 121

5.2.5 Finite-Size Aggregates 122

5.3 Condensation of DNA, Phase Diagram, and Structure 122

5.3.1 Short Polycations and Multivalent Cations 123

5.3.2 Long Polycations and Basic Proteins 123

5.4 Formation of Polycation–DNA Complexes: Polyplexes 125

5.5 DNA-Nanoparticles for Gene Delivery 126

5.5.1 Artificial Viruses 126

5.5.2 Cytotoxicity 127

5.6 Cellular Uptake and Intracellular Interactions of Polyplexes 127

5.7 Conclusion 129

Acknowledgment 129

References 129

6 Interactions of Histones with DNA: Nucleosome Assembly, Stability, Dynamics, and Higher Order Structure 135
Karsten Rippe, Jacek Mazurkiewicz, and Nick Kepper

6.1 Introduction 135

6.2 Histones 136

6.2.1 Core Histones 136

6.2.2 Linker Histones 137

6.2.3 Histone Variants 138

6.2.4 Posttranslational Modifications of Histones 141

6.3 Structure of Histone–DNA Complexes 142

6.3.1 Nucleosome 142

6.3.2 Chromatosome 144

6.4 Assembly of Nucleosomes and Chromatosomes 144

6.4.1 Chaperone-Guided Nucleosome Assembly 146

6.4.2 Chromatin Remodeling Complexes 147

6.5 Stability and Dynamics of Nucleosomes 148

6.5.1 Accessibility of Nucleosomal DNA 148

6.5.2 DNA Sequence Specificity of Nucleosome Binding 149

6.5.3 Thermodynamic and Kinetic Parameters for Nucleosome Formation under Physiological Conditions 150

6.6 Higher Order Chromatin Structures 154

6.6.1 Assembly of Chromatin Fibers 154

6.6.2 Higher Order Folding of Chromatin Fibers 157

Acknowledgments 158

References 158

7 Opening and Closing DNA: Theories on the Nucleosome 173
Igor M. Kuli_c and Helmut Schiessel

7.1 Introduction 173

7.2 Unwrapping Nucleosomes 176

7.3 Nucleosome Sliding 180

7.4 Transcription Through Nucleosomes 187

7.5 Tail Bridging 194

7.6 Discussion and Conclusion 202

Acknowledgment 204

References 204

8 DNA–DNA Interactions 209
Lars Nordenski€old, Nikolay Korolev, and Alexander P. Lyubartsev

8.1 Introduction 209

8.2 The Statistical Polymer Solution Model Predicts DNA Collapse/Aggregation Phase Behavior 211

8.3 DNA in Solution is Condensed to a Compact State by Multivalent Cationic Ligands 214

8.3.1 DNA Compaction in Solution 214

8.3.2 Experimental Studies on Chromatin and Nucleosome Condensation 219

8.3.3 Measurement of DNA–DNA Forces from Osmotic Stress 221

8.4 Ion Correlation Effects Included in Theory and in Computer Modeling Explain DNA–DNA Attraction 222

8.4.1 Analytical Theories of DNA–DNA Interactions 222

8.4.2 Computer Simulations of DNA–DNA Interactions 224

8.4.3 Modeling DNA–DNA Interactions in Chromatin and NCP 227

8.5 Conclusions and Future Prospects 230

References 231

9 Hydration of DNA–Amphiphile Complexes 239
Cecilia Leal and Hakan Wennerström

9.1 Introduction 239

9.2 General Properties of DNA Double Helices and Cationic Aggregates 240

9.3 Thermodynamics of DNA–Amphiphile Complexes 243

9.4 Molecular Properties of DNA–Amphiphile Complexes 247

9.5 Concluding Remarks 249

References 250

10 DNA–Surfactant/Lipid Complexes at Liquid Interfaces 253
Dominique Langevin

10.1 Introduction 253

10.2 Soluble Surfactants 255

10.2.1 DNA–DTAB Surface Layers 255

10.2.2 Other DNA–Cationic Surfactants Systems 261

10.2.3 DNA Surfactants 262

10.3 Insoluble Surfactants 262

10.3.1 DNA–DODAB Surface Layers 263

10.3.2 DNA–TODAB Surface Layers 267

10.3.3 DNA–ODA Surface Layers 271

10.3.4 DNA Binding with Other Surfactant Layers 273

10.4 Lipids 274

10.4.1 Cationic Lipids–DNA Surface Layers 275

10.4.2 DSPC-Divalent Ion–DNA Surface Layers 276

10.4.3 DPPC-Divalent Ion–DNA Surface Layers 278

10.4.4 DMPE-Divalent Ion–DNA Surface Layers 279

10.4.5 Other Types of Binding 283

10.5 Mixtures of Surfactants and Lipids 284

10.6 Conclusion 285

References 286

11 DNA and DNA–Surfactant Complexes at Solid Surfaces 291
Marité Cárdenas and Tommy Nylander

11.1 Introduction 291

11.2 Adsorption of DNA at Surfaces 292

11.3 Attachment of DNA Surfaces—Strategies and Challenges 294

11.4 DNA Structure on Surfaces—Comparison with Highly Charged Polyelectrolytes 297

11.4.1 Regulating the DNA Compaction by Compaction Agents at Interfaces to Control the Structure 297

11.4.2 Cationic Surfactants and DNA at Hydrophobic Surfaces 298

11.4.3 Cationic Surfactants and DNA at Negatively Charged Surfaces 304

11.5 Some Applications—Arrays and Nanostamping 307

Acknowledgments 310

References 310

12 Role of Correlation Forces for DNA–Cosolute Interactions 317
Malek O. Khan

12.1 Introduction 317

12.2 Experimental Evidence of DNA Condensation Induced by Electrostatic Agents 317

12.3 Simulations Used to Characterize the DNA Compaction Mechanism 319

12.4 Ion Correlations Limiting the Validity of DLVO Theory 320

12.5 Ion Correlations Driving the Compaction of DNA 322

12.6 Conformation of Compact DNA—The Coil to Toroid Transition 328

12.7 Conclusions 332

References 334

13 Simulations of Polyions: Compaction, Adsorption onto Surfaces, and Confinement 337
A.A.C.C. Pais and P. Linse

13.1 Introduction 337

13.2 Models 339

13.3 Solutions of Polyions with Multivalent Counterions 340

13.3.1 Polyion Conformation 340

13.3.2 Small-Ion Distribution 341

13.3.3 Other Aspects 343

13.4 Polyion Adsorption onto Charged Surfaces 343

13.4.1 Surfaces with Homogeneous Surface Charge Densities 344

13.4.2 Surfaces with Heterogeneous Surface Charge Densities 344

13.5 Polyions in Confined Geometries 346

13.5.1 Structural Aspects 347

13.5.2 Free Energies 347

13.6 Concluding Remarks 349

References 349

14 Cross-linked DNA Gels and Gel Particles 353
Diana Costa, M. Carmen Morán, Maria G. Miguel, and Björn Lindman

14.1 Introduction 353

14.2 Covalently Cross-Linked DNA Gels 354

14.2.1 Volumetric Behavior of DNA Gel Probes DNA–Cosolute Interactions 354

14.2.2 Swelling Reversibility 357

14.3 ds-DNA versus ss-DNA: Skin Formation 357

14.4 DNA Gel Particles 358

14.4.1 Particle Characterization 358

14.4.2 Particle Swelling and Deswelling Kinetics 359

14.4.3 Kinetics of DNA Release 360

14.5 Physical DNA Gels 361

14.5.1 Phase Behavior 361

14.5.2 Rheological Studies 362

References 363

15 DNA as an Amphiphilic Polymer 367
Rita S. Dias, Maria G. Miguel, and Björn Lindman

15.1 Some General Aspects of Self-Assembly 367

15.2 Illustrations 369

15.2.1 Solubilization of Hydrophobic Molecules in ds-DNA 370

15.2.2 Adsorption on Hydrophobic Surfaces 372

15.2.3 Effects of Hydrophobic Cosolutes on DNA Melting 372

15.2.4 Differences in Interactions (Phase Separation) of Cationic Surfactants between ss-DNA and ds-DNA 373

15.2.5 DNA–Protein Interaction 374

15.2.6 Dependence of DNA Melting on Base Sequence 374

15.2.7 DNA Physical and Chemical Gels 374

References 375

16 Lipid–DNA Interactions: Structure–Function Studies of Nanomaterials for Gene Delivery 377
Kai K. Ewert, Charles E. Samuel, and Cyrus R. Safinya

16.1 Introduction 377

16.2 Formation and Structures of CL–DNA Complexes 378

16.3 Effect of the Lipid–DNA Charge Ratio (rchg) on CL–DNA Complex Properties 383

16.3.1 Physicochemical Effects and Phase Behavior of CL–DNA Lipids 383

16.3.2 Biological Effects 386

16.4 Effect of the Membrane Charge Density (sM) on CL–DNA Complex Properties 387

16.5 Effect of Nonlamellar CL–DNA Complex Structure on the Transfection Mechanism 391

16.6 Model of Transfection with Lamellar CL–DNA Complexes 393

16.7 Model of Transfection with Inverted Hexagonal CL–DNA Complexes 395

16.8 PEGylated CL–DNA Complexes: Surface Functionalization and Distinct DNA–DNA Interaction Regimes 396

16.8.1 DNA–DNA Interaction Regimes in PEG-Lipid CL–DNA Complexes 396

16.8.2 Surface Functionalization of CL–DNA Complexes with PEG–Lipids 397

16.9 Conclusion and Summary 400

Acknowledgments 400

References 401

Index 405

Sprache englisch
Maße 163 x 244 mm
Gewicht 748 g
Einbandart gebunden
Themenwelt Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Chemie Physikalische Chemie
ISBN-10 0-470-25818-7 / 0470258187
ISBN-13 978-0-470-25818-7 / 9780470258187
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Nadine Reinicke

Buch | Softcover (2021)
Urban & Fischer in Elsevier (Verlag)
CHF 22,50
Grundlagen, Algorithmen, Anwendungen

von Rainer Merkl

Buch | Hardcover (2022)
Wiley-VCH (Verlag)
CHF 109,95