Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Advanced Analytics and Learning on Temporal Data -

Advanced Analytics and Learning on Temporal Data

10th ECML PKDD Workshop, AALTD 2025, Porto, Portugal, September 19, 2025, Revised Selected Papers
Buch | Softcover
XXV, 210 Seiten
2026
Springer International Publishing (Verlag)
978-3-032-15534-4 (ISBN)
CHF 74,85 inkl. MwSt
  • Noch nicht erschienen - erscheint am 04.02.2026
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book constitutes the revised selected papers of the 10th ECML PKDD workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2025, held in Porto, Portugal, on September 19, 2025.

The 13 full papers presented here were carefully reviewed and selected from 22 submissions. The papers focus on the following topics: Clustering and Analysis of Time Series; Forecasting and Prediction; Analysis and Processing of Time Series; Models and Approaches Based on Deep Learning and LLMs; Time Series Classification; Augmentation, Imputation, and Preprocessing Techniques.

e-SMOTE: a train set rebalancing algorithm for time series classification.- The Next Motif: Tapping into Recurrence Dynamics and Precursor Signals to Forecast Events of Interest.- Re-framing Time Series Augmentation Through the Lens of Generative Models.- FuelCast: Benchmarking Tabular and Temporal Models for Ship Fuel Consumption.- MoTM: Towards a Foundation Model for Time Series Imputation based on Continuous Modeling.- A Deep Dive into Alternatives to the Global Average Pooling for Time Series Classification.- Adaptive Fine-Tuning via Pattern Specialization for Deep Time Series Forecasting.- Unsupervised Feature Construction for Time Series Anomaly Detection - An Evaluation.- Multi-output Ensembles for Multi-step Forecasting.- Time series extrinsic regression algorithms for forecasting long time series with a short horizon.- Towards a Library for the Analysis of Temporal Sequences.- FiTEM: Fine-tuning Time-series Foundation Models for Selective Forecasting.- T3A-LLM: A Two-Stage Temporal Knowledge Graph Alignment Method Enhanced by LLM.

Erscheint lt. Verlag 15.3.2026
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo XXV, 210 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte batch learning • Boosting • classification and regression trees • Computing Methodologies • Data Mining • Data streaming • Forecasting • information systems • Instance-Based Learning • Mathematics of Computing • spatial-temporal systems • Supervised learning by classification • Time Series Analysis
ISBN-10 3-032-15534-7 / 3032155347
ISBN-13 978-3-032-15534-4 / 9783032155344
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20