Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Reinforcement Learning - Zhiqing Xiao

Reinforcement Learning

Theory and Python Implementation. DE

(Autor)

Buch | Softcover
xxii, 559 Seiten
2025
Springer (Verlag)
978-981-19-4935-7 (ISBN)
CHF 82,35 inkl. MwSt

Reinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning systematically and introduces all mainstream reinforcement learning algorithms such as PPO, SAC, and MuZero. It also covers key technologies of GPT training such as RLHF, IRL, and PbRL. Every chapter is accompanied by high-quality implementations, and all implementations of deep reinforcement learning algorithms are with both TensorFlow and PyTorch. Codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux.

This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.

Zhiqing Xiao obtained doctoral degree from Tsinghua University in 2016 and has more than 15 years in academic research and industrial practices on data-analytics and AI. He is the author of two AI bestsellers in Chinese: "Reinforcement Learning" and "Application of Neural Network and PyTorch" and published many academic papers. He also contributed to recent versions of the open-source software Gym.


Chapter 1. Introduction of Reinforcement Learning (RL).- Chapter 2. MDP: Markov Decision Process.- Chapter 3. Model-based Numerical Iteration.- Chapter 4. MC: Monte Carlo Learning.- Chapter 5. TD: Temporal Difference Learning.- Chapter 6. Function Approximation.- Chapter 7. PG: Policy Gradient.- Chapter 8. AC: Actor-Critic.- Chapter 9. DPG: Deterministic Policy Gradient.- Chapter 10. Maximum-Entropy RL.- Chapter 11. Policy-based Gradient-Free Algorithms.- Chapter 12. Distributional RL.- Chapter 13. Minimize Regret.- Chapter 14. Tree Search.- Chapter 15. More Agent-Environment Interfaces.- Chapter 16. Learn from Feedback and Imitation Learning.

The book is an excellent resource for anyone looking to explore the world of reinforcement learning (RL). This book combines theoretical depth with practical implementation, making it a standout choice for students, researchers, and industry professionals alike. ... The book is a comprehensive guide that balances theoretical rigor with practical usability. (Catalin Stoean, zbMATH 1562.68008, 2025)

Erscheinungsdatum
Zusatzinfo XXII, 559 p. 61 illus., 60 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 30 mm
Gewicht 873 g
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • Deep Reinforcement Learning • machine learning • Python Implementations • Reinforcement Learning
ISBN-10 981-19-4935-2 / 9811949352
ISBN-13 978-981-19-4935-7 / 9789811949357
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,95
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75