Deep Learning for Intrusion Detection (eBook)
333 Seiten
Wiley (Verlag)
978-1-394-28518-1 (ISBN)
Comprehensive resource exploring deep learning techniques for intrusion detection in various applications such as cyber physical systems and IoT networks
Deep Learning for Intrusion Detection provides a practical guide to understand the challenges of intrusion detection in various application areas and how deep learning can be applied to address those challenges. It begins by discussing the basic concepts of intrusion detection systems (IDS) and various deep learning techniques such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep belief networks (DBNs). Later chapters cover timely topics including network communication between vehicles and unmanned aerial vehicles. The book closes by discussing security and intrusion issues associated with lightweight IoTs, MQTT networks, and Zero-Day attacks.
The book presents real-world examples and case studies to highlight practical applications, along with contributions from leading experts who bring rich experience in both theory and practice.
Deep Learning for Intrusion Detection includes information on:
- Types of datasets commonly used in intrusion detection research including network traffic datasets, system call datasets, and simulated datasets
- The importance of feature extraction and selection in improving the accuracy and efficiency of intrusion detection systems
- Security challenges associated with cloud computing, including unauthorized access, data loss, and other malicious activities
- Mobile Adhoc Networks (MANETs) and their significant security concerns due to high mobility and the absence of a centralized authority
Deep Learning for Intrusion Detection is an excellent reference on the subject for computer science researchers, practitioners, and students as well as engineers and professionals working in cybersecurity.
FAHEEM SYEED MASOODI, PHD, is an Associate Professor of Cybersecurity at Bahrain Polytechnic University. He previously served at the University of Kashmir and the Jazan University in Saudi Arabia. He holds a PhD in Network Security and Cryptography and has published extensively in cryptography, intrusion detection, post-quantum cryptography, financial security, and IoT. His contributions include several books, high-impact papers, and fellowships from France, Brazil, India, and Malaysia.
ALWI BAMHDI, PHD, is an Associate Professor in the Computer Sciences Department at Umm ul Qura University, Saudi Arabia. His research interests include mobile ad hoc networks, wireless sensor networks, and information security.
| Erscheint lt. Verlag | 10.11.2025 |
|---|---|
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
| Schlagworte | Anomaly Detection • Cloud Security • Cyber Physical Systems • cybersecurity deep learning • cybersecurity IoT • Intrusion Detection Systems • IoMT • MANETs • mobile adhoc networks • MQTT networks • Network Security • Zero-day Attacks |
| ISBN-10 | 1-394-28518-3 / 1394285183 |
| ISBN-13 | 978-1-394-28518-1 / 9781394285181 |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich