Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Deep Learning for Intrusion Detection (eBook)

Techniques and Applications
eBook Download: PDF
2025
333 Seiten
Wiley (Verlag)
978-1-394-28518-1 (ISBN)

Lese- und Medienproben

Deep Learning for Intrusion Detection -
Systemvoraussetzungen
116,99 inkl. MwSt
(CHF 114,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Comprehensive resource exploring deep learning techniques for intrusion detection in various applications such as cyber physical systems and IoT networks

Deep Learning for Intrusion Detection provides a practical guide to understand the challenges of intrusion detection in various application areas and how deep learning can be applied to address those challenges. It begins by discussing the basic concepts of intrusion detection systems (IDS) and various deep learning techniques such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep belief networks (DBNs). Later chapters cover timely topics including network communication between vehicles and unmanned aerial vehicles. The book closes by discussing security and intrusion issues associated with lightweight IoTs, MQTT networks, and Zero-Day attacks.

The book presents real-world examples and case studies to highlight practical applications, along with contributions from leading experts who bring rich experience in both theory and practice.

Deep Learning for Intrusion Detection includes information on:

  • Types of datasets commonly used in intrusion detection research including network traffic datasets, system call datasets, and simulated datasets
  • The importance of feature extraction and selection in improving the accuracy and efficiency of intrusion detection systems
  • Security challenges associated with cloud computing, including unauthorized access, data loss, and other malicious activities
  • Mobile Adhoc Networks (MANETs) and their significant security concerns due to high mobility and the absence of a centralized authority

Deep Learning for Intrusion Detection is an excellent reference on the subject for computer science researchers, practitioners, and students as well as engineers and professionals working in cybersecurity.

FAHEEM SYEED MASOODI, PHD, is an Associate Professor of Cybersecurity at Bahrain Polytechnic University. He previously served at the University of Kashmir and the Jazan University in Saudi Arabia. He holds a PhD in Network Security and Cryptography and has published extensively in cryptography, intrusion detection, post-quantum cryptography, financial security, and IoT. His contributions include several books, high-impact papers, and fellowships from France, Brazil, India, and Malaysia.

ALWI BAMHDI, PHD, is an Associate Professor in the Computer Sciences Department at Umm ul Qura University, Saudi Arabia. His research interests include mobile ad hoc networks, wireless sensor networks, and information security.

Erscheint lt. Verlag 10.11.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Schlagworte Anomaly Detection • Cloud Security • Cyber Physical Systems • cybersecurity deep learning • cybersecurity IoT • Intrusion Detection Systems • IoMT • MANETs • mobile adhoc networks • MQTT networks • Network Security • Zero-day Attacks
ISBN-10 1-394-28518-3 / 1394285183
ISBN-13 978-1-394-28518-1 / 9781394285181
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Auto der Zukunft – Vernetzt und autonom fahren

von Roman Mildner; Thomas Ziller; Franco Baiocchi

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
CHF 37,10