Microsoft Semantic Kernel in Action
Manning Publications (Verlag)
978-1-63343-556-8 (ISBN)
- Noch nicht erschienen (ca. Mai 2026)
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
Memory patterns implemented: Maintain short-term context and durable RAG memory for accurate conversations.
Plugin creation and management: Expose, register, and orchestrate tools that extend agent capabilities safely.
Multimodal integration: Combine text, speech, and vision models to enrich user interactions.
Task planners and function calling: Automate multi-step workflows, reducing manual glue code and errors.
Model flexibility: Switch between OpenAI GPT, Llama, or Phi without refactoring business logic.
Enterprise-ready samples: Logging, testing, and security patterns keep agents reliable in production.
Building AI Agents in .NET by Daniel Costea, shares real-world patterns proven across two decades of enterprise projects. Step-by-step projects start small—a chatbot with memory—then scale to a multimodal copilot using planners, plugins, and RAG. Inline diagrams, “what went wrong” callouts, and clean refactors reinforce every concept.
Finish ready to add intelligent agents to greenfield or legacy .NET applications, delighting users while safeguarding performance and budget.
Perfect for beginner-to-expert .NET developers, data scientists, and AI enthusiasts eager to embed generative AI.
Daniel Costea is a Microsoft MVP and veteran engineer known for empowering developers with cutting-edge .NET skills. With two decades building enterprise IoT, ML, and AI solutions, Daniel brings energetic clarity to every page. He distills his deep experience into actionable patterns that help readers deliver reliable, innovative software fast.
PART 1: GETTING STARTED WITH MICROSOFT SEMANTIC KERNEL
1 SUPERCHARGING TRADITIONAL PROGRAMMING WITH GENERATIVE AI
2 BUILDING YOUR FIRST PROJECT WITH SEMANTIC KERNEL
PART 2: EXPLORING SEMANTIC KERNEL FUNDAMENTALS
3 MEETING THE KERNEL OF SEMANTIC KERNEL
4 BUILDING CONTEXT WITH CHAT COMPLETION AND ADVANCED PROMPTS
5 ASSEMBLING BUILDING BLOCKS WITH NATIVE AND SEMANTIC FUNCTIONS
6 AUGMENTING PROMPTS WITH KERNEL FUNCTIONS AND PLUGINS
17 FUNCTION CALLING WITH MANUAL PLANNING
8 FUNCTION CALLING WITH AUTOMATIC PLANNING
PART 3: ADVANCED TECHNIQUES AND INTEGRATION WITH SEMANTIC KERNEL
9 SAFEGUARDING THE KERNEL FUNCTIONS WITH FILTERS
10 PROVIDING LONG-TERM MEMORIES WITH RAG
11 EXPLORING OPEN SOURCE LLMS
PART 4: EXPLORING ADVANCED SEMANTIC KERNEL FEATURES
12 CRAFTING AI AGENTS USING AI ASSISTANTS
13 DESIGNING COLLABORATIVE AGENTS WITH PATTERNS AND STRATEGIES
APPENDICES
APPENDIX A: INSTALLING SEMANTIC KERNEL
APPENDIX B: PERSONA-ACTION-CONTEXT-TEMPLATE (PACT) PROMPTING FRAMEWORK
APPENDIX C: NATIVE AND SEMANTIC PLUGINS
| Erscheint lt. Verlag | 31.5.2026 |
|---|---|
| Verlagsort | New York |
| Sprache | englisch |
| Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
| Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
| Informatik ► Software Entwicklung ► SOA / Web Services | |
| Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
| ISBN-10 | 1-63343-556-3 / 1633435563 |
| ISBN-13 | 978-1-63343-556-8 / 9781633435568 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
aus dem Bereich