Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Web and Big Data -

Web and Big Data

9th International Joint Conference, APWeb-WAIM 2025, Shenyang, China, August 28–30, 2025, Proceedings, Part IV
Buch | Softcover
2026
Springer Verlag, Singapore
978-981-95-5721-9 (ISBN)
CHF 146,75 inkl. MwSt
  • Titel nicht im Sortiment
  • Artikel merken
The four-volume set LNCS constitutes the refereed proceedings of the 9th International Joint Conference on Web and Big Data, APWeb-WAIM 2025, held in Shenyang, China, during August 28–30, 2025.


The 136 full papers and 15 short papers presented in these proceedings were carefully reviewed and selected from 472 submissions. The papers are organized in the following topical sections:


Part I: Data Mining I; Machine Learning I; Information Retrieval and Knowledge Management I; Graph Data Management andAnalytics I; Complex Data Management.


Part II: Complex Data Management; Spatial and Temporal Data Management; Data Privacy and Trusted AI; Data Management on New Hardwares; Query Processing and Optimization; Data Mining II.


Part III: Data Mining II; Machine Learning II; Information Retrieval and Knowledge Management II; Graph Data Management andAnalytics II; Big Data Management.


Part IV: Big Data Management; LLM for Data Management; Information Retrieval; Demonstration Paper;  Industry Paper.

.- Big Data Management.


.- Reputation-based Blockchain Node Reallocation in Heterogeneous Networks.


.- Core-set Selection Considering Parties Honesty in Vertical Federated Learning.


.- Auxiliary Variables Enhanced intra- and inter-Series Tokenization for Multivariate Time Series
 Forecasting.


.- QUEST: Query-Aware Learned Metric Index for Similarity Search.


.- CFEO: Causal Feature Extraction and Optimization for Cross-Domain Text Classification.


.- A Data-Balanced and Privacy-Preserving Incentive Mechanism for Federated Learning based on
 MADRL.


.- LLM for Data Management.


.- Word Pair Information is Important for Nested Named Entity Recognition.


.- KAN-Based Dynamic Relational Meta-Learning for Few-Shot Knowledge Graph Completion.


.- Contrastive Learning Enhanced Semi-supervisedAnomaly Detection.


.- Personalized text-to-image generation using semantically enhanced diffusion models.


.- MIMIC-RxBench: Benchmarking Large Language Models for Prescription Error Classification.


.- Evaluating the Performance of Large Language Models on a Multi-label Classification Task.


.- Prompt-Partitioned Multi-Task Learning for Universal Sentence Representations.


.- Information Retrieval.


.- Resolving Memory Challenges in Cluster Computing Systems Via StratifiedAsymptotic Sampling for
 Big Data Classification.


.-  Optimizing Real-time Complex Event Processing Parameter-driven Selection Policy.


.-  Frame-wise Multimodal Retrieval in Video Corpus with Contrastive Learning.


.- Dynamic Hybrid Retrieval for Materials Science: Optimizing Information Systems for Numerical and
 Symbol-Intensive Knowledge Processing.


.-  Efficient High Utility Co-location Pattern Mining under Positive and Negative Utility Constraints.


.-  LFS: Efficient Account Migration across Sharded Blockchains via Lock-Free Scheduling.


.- ProteinMM:Adaptive Multi-View and Task-Grouped Evolutionary Learning for Prediction of Protein
 Structural Features.


.- SFusionNet: Airport Passenger Flow Prediction Model Based on Fusion Network.


.- Demonstration Paper.


.- SocialED:APython Library for Social Event Detection.


.- Demonstrating SpectralCrawler: a Framework for Physical-based Integration of Heterogeneous
 Ground Object Spectral Libraries from the Web.


.-  INRCM:An Improvable Neighbor Relationship’s Co-location Miner.


.- Demonstrating an Efficient System for Fast Processing and Visualization of BigAirborne Full
Waveform LiDAR Data.


.- APES: Interactive Pattern Mining System Based on Cross-Entropy Probability Modeling.


.- Antigen: HighwayAbnormal Event Detection System Driven by Roadside Edge Computing.


.- Egret: Massive Highway Monitoring Time Series Data Sharing System.


.- A Privacy-Preserving Semantic Trajectory Query System in Cloud-Fog Collaborative Environments.


.- DCPCPM:AMiner For Discovering Concise Prevalent Co-location Patterns.


.-  SPUS-Agent: LLM-Based Intelligent Agent for Subjective Perception of Urban Streets.


.-  KIMII: ASystem for Highway Key Information Identification and Multi-Source Data Integration.


.-  SHMComp:AMultifunctional System for Highway Structural Health Monitoring Data Compression.


.-  VEkNN:Verifiable and Encrypted kNN Search over High-Dimensional Vectors.


.- Industry Paper.


.- MLLM-Based Evaluation and Enhancement of Open-Set Object Detection DatasetAnnotations.


.- BitalosDB: Partitioned Key-Value Storage Engine for Lower WriteAmplification.


.- LLMATCH: aUnified Schema Matching Framework with Large Language Models.


.- FasterTune: A New Paradigm for Database Tuning with Large Language Models and Bayesian
 Optimization.

Erscheint lt. Verlag 7.3.2026
Reihe/Serie Lecture Notes in Computer Science
Zusatzinfo Approx. 700 p.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Advanced database and Web applications • Big data management • Block chain models and applications • Data engineering for big remote sensing data • Data management on new hardwares • Data Mining • Graph and social network analysis • Graph data, RDF, social networks • information extraction • Information Retrieval • knowledge graphs • machine learning • Natural Language Processing • Parallel and distributed data management • query processing and optimization • Recommender Systems • representation learning • Security, privacy, and trusted AI • spatial and temporal databases • Streams, complex event processing
ISBN-10 981-95-5721-6 / 9819557216
ISBN-13 978-981-95-5721-9 / 9789819557219
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95