Advanced Automation for Comprehensible Causal Explanations of Reinforcement Learning Agents
2026
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-50494-6 (ISBN)
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-50494-6 (ISBN)
- Noch nicht erschienen - erscheint am 08.02.2026
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
This thesis introduces Auto-BENEDICT, a novel, fully automated methodology designed to generate human-comprehensible causal explanations for model-free Reinforcement Learning (RL) agents. The system addresses the trade-off between high performance and transparency in RL by integrating Bayesian Networks for causal inference and Recurrent Neural Networks to forecast future states and actions. The method provides answers to both Why and Why not questions, thereby increasing user trust and interpretability. The work also introduces enhanced importance metrics including both Q-value-based and graph-based approaches used to detect distal information, i.e., critical sequences of states or actions that are key to solving a task. These metrics are then fused with the causal explanation framework, resulting in Auto-BENEDICT, which not only explains but also recognizes high-risk or critical states automatically. Validation through computational experiments and a human evaluation study shows that Auto-BENEDICT significantly outperforms traditional methods in comprehensibility and trustworthiness, contributing a major advancement in Explainable Reinforcement Learning.
Rudy Milani obtained his Dr. rer. nat. in 2025 in Explainable Reinforcement Learning from the Universität der Bundeswehr München as a member of the COMTESSA research group. His work focuses on reinforcement learning, mathematical modelling, and optimization, combining theoretical insights with practical applications.
| Erscheint lt. Verlag | 19.4.2026 |
|---|---|
| Zusatzinfo | Approx. 200 p. Textbook for German language market. |
| Verlagsort | Wiesbaden |
| Sprache | englisch |
| Maße | 148 x 210 mm |
| Themenwelt | Mathematik / Informatik ► Informatik |
| Schlagworte | Causal Explanations • Distal Information • Explainable Reinforcement Learning • Important States • Reconstructed Transition Multigraph • Reconstructed Transition Multiplex |
| ISBN-10 | 3-658-50494-3 / 3658504943 |
| ISBN-13 | 978-3-658-50494-6 / 9783658504946 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
BILDNER Verlag
CHF 55,85
Schritt für Schritt einfach erklärt
Buch | Hardcover (2024)
Markt + Technik (Verlag)
CHF 20,90
das Praxishandbuch
Buch | Hardcover (2024)
Markt + Technik Verlag
CHF 27,90