Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Elliptic Curves and Modular Forms in Arithmetic Geometry -

Elliptic Curves and Modular Forms in Arithmetic Geometry

Celebrating Massimo Bertolini's 60th Birthday, Milano, Italy, September 12-16, 2022
Buch | Hardcover
X, 310 Seiten
2026
Springer International Publishing (Verlag)
978-3-032-13122-5 (ISBN)
CHF 224,65 inkl. MwSt
  • Noch nicht erschienen - erscheint am 08.02.2026
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book arises from the conference Elliptic Curves and Modular Forms in Arithmetic Geometry, Celebrating Massimo Bertolini s 60th birthday held in Milano in September 2022. Massimo Bertolini is one of the most influential number theorists of the last 30 years, whose results and ideas have been a source of inspiration for many mathematicians working in the fascinating area of the Birch and Swinnerton-Dyer conjecture, a Millennium Problem of the Clay Institute. The beauty of the subject, combined with the deep mathematics involved, attracts some of the most brilliant mathematicians in all the world. The book of Massimo Bertolini opened the way to study these problems, using several different techniques, especially of p-adic nature, and is recognized as a leading mathematician in this area. Because of the special position of Massimo in this area of number theory, many influential mathematicians attended the conference in Milano and the Summer School in Essen in his honor on the occasion of his 60th birthday.

Ashay a. Burungale, shinichi kobayashi and kazuto ota, on the tate-shafarevich groups of cm elliptic curves over anticyclotomic zp-extensions at inert primes. Francesc castella, nonvanishing of generalised kato classes and iwasawa main conjectures.- henri darmon and alice pozzi, flach classes and generalised hecke eigenvalues.- samit dasgupta, on constructing extensions of residually isomorphic characters.- christopher deninger and michael wibmer, on the proalgebraic fundamental group of topological  spaces and amalgamated products of affine group schemes.- michele fornea and lennart gehrmann, non-archimedean plectic jacobians.- francesca gatti and victor rotger, a p-adic gross-zagier formula for the triple p-adic l-function at non-crystalline points.- chan-ho kim, on the anticyclotomic mazur tate conjecture for elliptic curves with supersingular reduction.- daniel kriz, the bertolini-darmon-prasanna p-adic l-function via qdr-expansions.- yifeng liu, anticyclotomic p-adic l-functions for rankin selberg product.- david loeffler, robert rockwood, and sarah livia zerbes, spherical varieties and p-adic families of cohomology classes.- marco adamo seveso, reciprocity laws for generalized heegner classes.- matteo tamiozzo, congruences of modular forms and modularity of tate shafarevich classes.

Erscheint lt. Verlag 20.2.2026
Reihe/Serie Springer Proceedings in Mathematics & Statistics
Zusatzinfo X, 310 p. 1 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Schlagworte Arithmetic Geometry • Elliptic Curves • Iwasawa theory • Massimo Bertolini • Modular Forms • Number Theory • p-adic families of modular forms
ISBN-10 3-032-13122-7 / 3032131227
ISBN-13 978-3-032-13122-5 / 9783032131225
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 118,95
Differentialrechnung im ℝⁿ, gewöhnliche Differentialgleichungen

von Otto Forster; Florian Lindemann

Buch | Softcover (2025)
Springer Spektrum (Verlag)
CHF 46,15