Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Inference in Statistical Modelling and Machine Learning

A Concise Introduction
Buch | Hardcover
323 Seiten
2026
Cambridge University Press (Verlag)
978-1-009-63068-9 (ISBN)
CHF 174,55 inkl. MwSt
  • Noch nicht erschienen (ca. Mai 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This concise introduction to statistical modelling and machine learning focuses on core ideas and a carefully selected set of representative methods. Requiring only introductory calculus, probability and linear algebra, it provides readers with an immediately useful toolkit and equips them to consult more advanced resources.
Statistical modelling and machine learning offer a vast toolbox of inference methods with which to model the world, discover patterns and reach beyond the data to make predictions when the truth is not certain. This concise book provides a clear introduction to those tools and to the core ideas – probabilistic model, likelihood, prior, posterior, overfitting, underfitting, cross-validation – that unify them. A mixture of toy and real examples illustrates diverse applications ranging from biomedical data to treasure hunts, while the accompanying datasets and computational notebooks in R and Python encourage hands-on learning. Instructors can benefit from online lecture slides and exercise solutions. Requiring only first-year university-level knowledge of calculus, probability and linear algebra, the book equips students in statistics, data science and machine learning, as well as those in quantitative applied and social science programmes, with the tools and conceptual foundations to explore more advanced techniques.

James Burridge is Professor of Probability and Statistical Physics at the University of Portsmouth, where he teaches probability, stochastic processes and statistical learning. He models language, birdsong, rocks, tessellations and games, and develops commercial applications of machine learning in green technology. Nick Tosh is Lecturer in Philosophy at the University of Galway. He has published on methodological disputes in the history of science and on the interpretation of probability. Until 2024, he coordinated Galway's Arts with Data Science BA.

1. Orientation; 2. Supervised learning warm-up; 3. Unsupervised learning warm-up; 4. Interlude: probability, likelihood and Bayes; 5. Probabilistic modelling; 6. Frequentist and Bayesian uncertainty; 7. Frequentist linear regression; 8. Directed graphical models; 9. Bayesian linear regression, priors, and regularisation; 10. Bayesian methods; 11. Classification; 12. Unsupervised learning: a deeper dive; 13. Neural networks and deep learning; 14. Expanding the toolkit; A. Probability theory; B. Linear algebra; C. Jensen's and Gibbs' inequalities; References; Index.

Erscheint lt. Verlag 31.5.2026
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
ISBN-10 1-009-63068-7 / 1009630687
ISBN-13 978-1-009-63068-9 / 9781009630689
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die materielle Wahrheit hinter den neuen Datenimperien

von Kate Crawford

Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …

von Mustafa Suleyman; Michael Bhaskar

Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20