Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Time Series Forecasting Using Foundation Models - Marco Peixeiro

Time Series Forecasting Using Foundation Models

(Autor)

Buch | Hardcover
256 Seiten
2025
Manning Publications (Verlag)
978-1-63343-589-6 (ISBN)
CHF 78,50 inkl. MwSt
Your forecasts lag while data grows, hardware costs, and deadlines tighten. Traditional model training demands weeks of tuning and GPU burns time. Meanwhile, foundation models already understand seasonality, holiday spikes, and rare shocks. This book hands you TimeGPT, Chronos, and other pretrained powerhouses. Generate zero-shot forecasts or fine-tune quickly with only laptop resources. Deliver stronger predictions, faster insights, and measurable business value in days, not months. 



Model internals explained: Understand how large time models capture temporal patterns and uncertainty. 



Zero-shot workflow: Run instant forecasts on custom data without retraining, saving weeks of effort. 



Fine-tuning guides: Adapt foundation models to niche domains for even higher accuracy. 



Evaluation playbook: Benchmark probabilistic and point forecasts using industry-standard metrics. 



Laptop-friendly code: All examples rely on Python and CPUs, no high-end GPUs required. 

Time Series Forecasting Using Foundation Models by data-science instructor Marco Peixeiro containing clear diagrams, annotated notebooks, and rigorously tested examples establish immediate credibility. 

You build a tiny foundation model to grasp pretraining mechanics, then experiment with production-grade models like TimeGPT and Chronos. Each chapter layers hands-on labs, checkpoints, and real-world case studies. Finish ready to integrate pretrained forecasting models, slash development time, and present trustworthy predictions to stakeholders. Your pipeline becomes faster, cheaper, and easier to maintain. 

Designed for data scientists and ML engineers comfortable with basic forecasting theory and Python.

Marco Peixeiro is a renowned data-science educator known for demystifying complex forecasting techniques. With years developing open-source libraries at Nixtla, Marco brings clarity, practicality, and enthusiasm to every page. He distills cutting-edge research into step-by-step guidance that helps readers deliver accurate forecasts quickly.

PART 1: THE RISE OF FOUNDATION MACHINE LEARNING MODELS 

1 UNDERSTANDING FOUNDATION MODELS 

2 BUILDING A FOUNDATION MODEL 

PART 2: FOUNDATION MODELS DEVELOPED FOR FORECASTING 

3 FORECASTING WITH TIMEGPT 

4 ZERO-SHOT PROBABILISTIC FORECASTING WITH LAG-LLAMA 

5 LEARNING THE LANGUAGE OF TIME WITH CHRONOS 

6 MOIRAI: A UNIVERSAL FORECASTING TRANSFORMER 

7 DETERMINISTIC FORECASTING WITH TIMESFM 

PART 3: LEVERAGE LLMS FOR TIME SERIES FORECASTING 

8 FORECASTING AS A LANGUAGE TASK 

9 REPROGRAM AN LLM FOR FORECASTING 

PART 4: CAPSTONE PROJECT 

10 CAPSTONE PROJECT: FORECASTING DAILY VISITS TO A BLOG

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 188 x 236 mm
Gewicht 450 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Software Entwicklung SOA / Web Services
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
ISBN-10 1-63343-589-X / 163343589X
ISBN-13 978-1-63343-589-6 / 9781633435896
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
design, build, and implement

von José Haro Peralta

Buch | Softcover (2025)
Manning Publications (Verlag)
CHF 83,45