Large Language Models - The Hard Part
Seiten
2026
O'Reilly Media (Verlag)
979-8-3416-2252-4 (ISBN)
O'Reilly Media (Verlag)
979-8-3416-2252-4 (ISBN)
- Titel nicht im Sortiment
- Artikel merken
Large Language Models: The Hard Parts offers a clear, practical examination of the limitations developers and ML engineers face when building LLM-powered applications. With a focus on implementation pitfalls (not just capabilities) this book provides actionable strategies supported by reproducible Python code and open source tools.
Large language models (LLMs) have transformed natural language processing, but deploying them in applications introduces numerous technical challenges. Large Language Models: The Hard Partsoffers a clear, practical examination of the limitations developers and ML engineers face when building LLM-powered applications. With a focus on implementation pitfalls (not just capabilities) this book provides actionable strategies supported by reproducible Python code and open source tools.
Readers will learn how to navigate key obstacles in system integration, input management, testing, safety, and cost control. Designed for engineers and technical product leads, this guide emphasizes practical solutions to real-world problems and promotes a grounded understanding of LLM constraints and trade-offs.
Design testing strategies for nondeterministic systems
Manage input formatting and long-context retrieval
Address output inconsistency and structural unreliability
Implement safety and content moderation frameworks
Explore alignment challenges and mitigation techniques
Leverage open source models and optimize costs
Large language models (LLMs) have transformed natural language processing, but deploying them in applications introduces numerous technical challenges. Large Language Models: The Hard Partsoffers a clear, practical examination of the limitations developers and ML engineers face when building LLM-powered applications. With a focus on implementation pitfalls (not just capabilities) this book provides actionable strategies supported by reproducible Python code and open source tools.
Readers will learn how to navigate key obstacles in system integration, input management, testing, safety, and cost control. Designed for engineers and technical product leads, this guide emphasizes practical solutions to real-world problems and promotes a grounded understanding of LLM constraints and trade-offs.
Design testing strategies for nondeterministic systems
Manage input formatting and long-context retrieval
Address output inconsistency and structural unreliability
Implement safety and content moderation frameworks
Explore alignment challenges and mitigation techniques
Leverage open source models and optimize costs
| Erscheint lt. Verlag | 30.4.2026 |
|---|---|
| Verlagsort | Sebastopol |
| Sprache | englisch |
| Maße | 178 x 232 mm |
| Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
| ISBN-13 | 979-8-3416-2252-4 / 9798341622524 |
| Zustand | Neuware |
| Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
| Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2025)
Reclam, Philipp (Verlag)
CHF 11,20
die materielle Wahrheit hinter den neuen Datenimperien
Buch | Hardcover (2024)
C.H.Beck (Verlag)
CHF 44,75
Künstliche Intelligenz, Macht und das größte Dilemma des 21. …
Buch | Softcover (2025)
C.H.Beck (Verlag)
CHF 25,20