Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Programming with wgpu in Rust -  William Smith

Programming with wgpu in Rust (eBook)

The Complete Guide for Developers and Engineers
eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
HiTeX Press (Verlag)
978-0-00-106641-0 (ISBN)
Systemvoraussetzungen
8,52 inkl. MwSt
(CHF 8,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'Programming with wgpu in Rust'
'Programming with wgpu in Rust' is a comprehensive guidebook for developers seeking to master modern GPU programming using Rust and the powerful wgpu graphics API, which implements the emerging WebGPU standard. Beginning with a thorough exploration of the historical evolution of graphics APIs and the motivations driving WebGPU, this book lays a robust foundation in the technologies and principles that underpin cutting-edge graphics and compute workloads. Readers are introduced to setting up a productive Rust and wgpu development environment, understanding idiomatic API usage, and employing effective debugging and error management strategies tailored for high-performance graphics applications.
Diving deeper, the book meticulously unpacks the core abstractions of wgpu, from adapter and device management to resource lifetimes, buffer and texture handling, shader authoring with WGSL and SPIR-V, and the structuring of advanced rendering and compute pipelines. Each chapter provides practical patterns, best practices, and architectural insights for topics such as GPU synchronization, multi-threaded command recording, instancing techniques, physically-based rendering, and bindless resource management. Extensive coverage of both graphical and general-purpose GPU (GPGPU) compute applications ensures that readers gain hands-on expertise in building efficient, scalable, and robust graphics engines.
Crucially, the book goes beyond basic tutorials, addressing real-world deployment challenges and engineering needs including cross-platform support-spanning Vulkan, Metal, DX12, OpenGL ES, desktop, and WebAssembly targets-asset pipelines, testing and validation strategies, profiling and performance tuning, and security considerations. Concluding with chapters on scaling complex wgpu/Rust applications, modular project architectures, asynchronous workflows, extensibility, and real-world case studies, this resource stands as an essential, end-to-end reference for both professionals and researchers building tomorrow's interactive and compute-intensive visual experiences in Rust.

Chapter 2
wgpu’s Core Concepts and GPU Device Management


Unlocking the true power of modern GPU programming begins with mastering how wgpu abstracts, manages, and exposes the GPU’s capabilities. This chapter goes far beyond surface-level initialization: it demystifies each critical layer, from selecting the right hardware adapter to finely orchestrating the life cycles and interactions of all core resources. By tackling the often-overlooked challenges of device heterogeneity, cross-platform compatibility, and resource safety, you’ll gain the insight needed to fully leverage wgpu’s explicit, robust design and set a solid technical stage for even the most demanding rendering and compute applications.

2.1 Adapter and Device Discovery


Efficient hardware utilization begins with a systematic and comprehensive approach to adapter and device discovery. This process involves identifying available compute units-often GPUs-and analyzing their capabilities to align with the application’s computational requirements and target deployment environments. The discovery mechanism must balance the need for detailed profiling with runtime overhead constraints, ensuring robustness and adaptability in both homogeneous and heterogeneous system configurations.

The initial phase of adapter discovery typically queries the underlying platform’s hardware abstraction layer or API runtime. For instance, in graphics and compute APIs such as Vulkan or Direct3D 12, enumerating physical devices is done through platform-specific calls that return a collection of adapters installed within the system. Each adapter exposes descriptors detailing vendor and device IDs, driver versions, supported extensions, and core feature sets. This enumeration step forms the basis for subsequent evaluation.

The critical task following enumeration is to assess the feature support of each candidate adapter. Supported features often dictate whether the device can fulfill key application demands such as advanced shader model versions, specific texture formats, ray tracing capabilities, or variable rate shading. Profiling features involves querying mandatory and optional extensions, feature flags, and sometimes hardware limits like maximum thread group sizes, maximum shared memory, and cache sizes. For example, Vulkan’s vkGetPhysicalDeviceFeatures API returns a fixed structure enumerating numerous Boolean feature toggles, which provide granular insight into the hardware’s functional capabilities.

Performance characterization is equally important to adapter selection. Raw metrics like theoretical FLOPS (floating-point operations per second), memory bandwidth, and clock speeds serve as primary indicators; however, these do not always correlate directly with application performance due to architectural differences such as varying cache hierarchies and compute unit efficiency. Consequently, practical benchmarking and profiling under representative workloads yield more reliable performance insights. These profiling activities can be integrated into initialization stages or conducted offline to maintain runtime responsiveness. Profiling typically examines kernel execution times, memory latency, and throughput under load, offering profiles amenable to dynamic selection or optimization.

Device selection algorithms combine capability and performance data with application-specific criteria. Criteria may include support for particular APIs or shader models, minimum required memory capacity, consistent feature subsets across multi-device deployments, or prioritization based on power consumption and thermal constraints. Weighting functions can be constructed to reflect these priorities, producing a ranking that guides the choice of primary compute devices. In environments with multiple adapters, selection strategies might identify the single best adapter or allocate workloads across devices based on complementary strengths.

Given the diversity of deployment targets, fallback strategies are essential to ensure graceful degradation on less capable or constrained devices. These strategies typically entail feature detection during device initialization, followed by conditional path selections in rendering or compute pipelines. Adaptations can include disabling advanced graphical effects, enabling reduced precision computation, or employing alternative algorithms with lower hardware demands. For instance, if ray tracing is unsupported, a fallback may leverage rasterization-based approximations or precomputed lighting caches.

Heterogeneous environments, consisting of discrete GPUs, integrated GPUs, and possibly accelerators such as FPGAs or specialized AI processors, require additional considerations. Device discovery routines must not only identify but also classify these devices accurately. Some APIs provide device type queries, enabling differentiation between integrated and discrete GPUs. Workload distribution schemes in such environments can improve overall throughput and energy efficiency by delegating specific tasks to devices where they perform best. For instance, compute-intensive, parallel workloads might be assigned to discrete GPUs while integrated GPUs handle lightweight rendering, conserving system resources.

Illustrative pseudocode for a typical adapter discovery and selection process reflects the above principles:

uint32_t adapterCount = 0; 
vkEnumeratePhysicalDevices(instance, &adapterCount, nullptr); 
std::vector<VkPhysicalDevice> adapters(adapterCount); 
vkEnumeratePhysicalDevices(instance, &adapterCount, adapters.data()); 
 
struct AdapterInfo { 
    VkPhysicalDevice device; 
    VkPhysicalDeviceProperties properties; 
    VkPhysicalDeviceFeatures features; 
    uint64_t performanceScore; 
}; 
 
std::vector<AdapterInfo> adapterInfos; 
 
for (auto& adapter : adapters) { 
    AdapterInfo info; 
...

Erscheint lt. Verlag 20.8.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-00-106641-2 / 0001066412
ISBN-13 978-0-00-106641-0 / 9780001066410
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 749 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95