Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Hydrogen for Modern Commerce -  William Smith

Hydrogen for Modern Commerce (eBook)

The Complete Guide for Developers and Engineers
eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
HiTeX Press (Verlag)
978-0-00-106618-2 (ISBN)
Systemvoraussetzungen
8,52 inkl. MwSt
(CHF 8,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'Hydrogen for Modern Commerce'
'Hydrogen for Modern Commerce' offers a definitive exploration of hydrogen's rapidly expanding role in the global economy. Meticulously structured, the book begins by establishing fundamental scientific principles-encompassing atomic structure, thermodynamics, safety, and phase management-providing readers with a rigorous foundation for understanding hydrogen's unique commercial properties. From the micro-scale of molecular interactions to the macro-scale of transport and energy systems, this text elucidates the essential characteristics that make hydrogen a linchpin of sustainable industry.
Building on these foundations, the book delivers a comprehensive analysis of advanced hydrogen production, storage, and distribution technologies. It examines both established and emerging pathways, including steam methane reforming, biological and photocatalytic generation, thermochemical cycles, and nuclear-assisted production, as well as circular economy approaches such as waste-to-hydrogen. Critical chapters address the complexities of logistics across multimodal transport, innovative chemical carriers, pipeline networks, and the digitalization of supply chains-underscoring the transformative impact of IoT, AI, blockchain, and automation in ensuring safe, transparent, and efficient hydrogen commerce.
In its final sections, the volume navigates the application of hydrogen throughout diverse industrial sectors-from petrochemicals and steelmaking to advanced mobility, distributed energy, and electronics manufacturing-while offering unrivaled insight into the evolving landscape of policy, market structures, regulation, and standards. With forward-looking analysis on digital transformation, cybersecurity, and international cooperation, 'Hydrogen for Modern Commerce' serves as an essential resource for engineers, policymakers, and strategists seeking authoritative guidance on harnessing hydrogen's potential for a resilient and decarbonized economy.

Bibliography


[1]   E. Zabetta and G. Yeager, “Flammability Limits and Combustion Properties of Hydrogen,” Combustion and Flame, vol. 24, pp. 107–120, 1975.

[2]   D. A. Crowl and J. F. Louvar, Chemical Process Safety: Fundamentals with Applications. Prentice Hall, 2001.

[3]   L. Zhang et al., “Investigation of the 2019 Tianjin Hydrogen Explosion: Causes and Lessons Learned,” Journal of Loss Prevention in the Process Industries, vol. 58, 2020.

[4]   M. Turner, M. Higinbotham, and P. Gardiner, “Hydrogen Gas Sensor Technologies for Safety Monitoring,” Sensors, vol. 11, no. 9, pp. 7981–7993, 2011.

1.5 Energy Density and Transport Implications


The energy density of a fuel is a fundamental parameter influencing its viability and efficiency across applications, with particular significance in the context of transportation. Hydrogen, as a fuel, is characterized by its distinct gravimetric and volumetric energy density properties, which markedly differ from conventional hydrocarbon fuels. This section delineates these differences, examining their consequences for storage, logistics, and system scalability, as well as the thermodynamic considerations relevant to long-distance transport and on-site utilization.

Gravimetric energy density, defined as the amount of energy per unit mass, is a primary advantage of hydrogen. With an approximate value of 120–142 MJ/kg depending on measurement conditions, hydrogen surpasses traditional fuels like gasoline (approximately 44 MJ/kg) and diesel (approximately 45 MJ/kg) by nearly threefold. This inherent superiority presents the opportunity for significant weight savings in fuel carriage, especially beneficial in aerospace and long-haul transport applications where every kilogram is critical. However, volumetric energy density, expressed as energy per unit volume, reveals a contrasting challenge for hydrogen. Under ambient conditions, hydrogen manifests an exceptionally low volumetric energy density of approximately 0.01079 MJ/L, whereas gasoline and diesel exhibit values near 32 MJ/L and 35.8 MJ/L respectively. This disparity necessitates either volumetric compression or cryogenic liquefaction to achieve practical storage capacities.

Storage tank design is thus profoundly influenced by hydrogen’s volumetric limitations. Compressed hydrogen gas (CHG) storage tanks typically operate at pressures ranging from 350 to 700 bar, employing advanced materials such as carbon-fiber-reinforced composites to withstand high stresses while minimizing weight. These tanks are volumetrically larger and heavier per unit energy stored compared to liquid hydrocarbon tanks, imposing constraints on vehicle packaging and payload. Liquefied hydrogen (LH2) storage, operating near 20 K, allows higher volumetric energy density (approximately 8.5 MJ/L) but introduces significant challenges related to cryogenic insulation, boil-off losses, and complex refueling infrastructure. Both storage methodologies impact the design of fuel tanks, necessitating rigorous safety measures due to hydrogen’s wide flammability range and low ignition energy.

From a logistics infrastructure perspective, hydrogen’s low volumetric density escalates the complexity and cost of distribution networks. Pipelines designed for hydrogen must address embrittlement issues and maintain minimum velocities to avoid hydrogen accumulation. Compressed gas cylinders or cryogenic tankers are commonly employed for transport, but each mode imposes limitations on range and payload efficiency. In contrast, liquid hydrocarbons benefit from well-established, high-throughput pipeline networks and dense energy storage enabling economical bulk transport. The spatial footprint required for hydrogen storage at refueling sites also tends to be larger, affecting station design and urban integration.

Regarding system scaling for both commercial and distributed transport, hydrogen’s volumetric energy density dictates a tradeoff between operational flexibility and infrastructure complexity. Large-scale, centralized hydrogen production and liquefaction facilities can exploit economies of scale and pipeline distribution to mitigate energy losses, but this model requires substantial capital investment. Conversely, distributed production via electrolysis near the point of use reduces transmission challenges but suffers from higher unit costs and intermittent supply profiles. The scale and density of hydrogen storage impact the feasibility of integration into existing vehicular fleets and public refueling infrastructure, influencing adoption rates and operational logistics.

Thermodynamic tradeoffs inherent to hydrogen transport further complicate system optimization. Long-distance transmission of hydrogen, particularly in gaseous form, entrains substantial compression energy overheads, which detract from net energy utility. Liquefaction, while improving volumetric density, demands an energy input approximating 30–40% of the hydrogen’s lower heating value (LHV), significantly affecting overall system efficiency. Moreover, boil-off losses during storage and transit increase proportionally with storage duration and environmental conditions. These thermodynamic penalties underscore the importance of carefully selecting transport modalities tailored to distance, throughput, and end-use context. For on-site consumption, particularly in distributed power generation or mobility applications, the low volumetric density challenges rapid refueling or high-power demand scenarios, necessitating hybridized storage strategies or onboard reforming where applicable.

Quantitative comparison of volumetric and gravimetric energy densities clarifies these implications. Table summarizes representative values for hydrogen in compressed and liquid states alongside conventional fuels.

Table 1.1: Gravimetric and volumetric energy densities of various fuels.

Fuel

Gravimetric Energy Density (MJ/kg)

Volumetric Energy Density (MJ/L)

Hydrogen (gas, 700 bar)

120–142

4.5

Hydrogen (liquid, 20 K)

120–142

8.5

Gasoline

44

32

Diesel

45

35.8

Compressed natural gas (200 bar)

50

9

Methanol (liquid)

19.9

15.6

The table highlights that despite hydrogen’s superior gravimetric energy density, the volumetric energy densities of liquid and compressed hydrogen remain below those of liquid hydrocarbons, necessitating compensatory engineering solutions for practical implementation.

The intrinsic characteristics of hydrogen’s energy density profile impose clear demands on storage tank design, emphasizing high-strength, lightweight materials for pressure vessels...

Erscheint lt. Verlag 26.9.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-00-106618-8 / 0001066188
ISBN-13 978-0-00-106618-2 / 9780001066182
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 933 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95