Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Feast-Spark Engineering Essentials -  William Smith

Feast-Spark Engineering Essentials (eBook)

The Complete Guide for Developers and Engineers
eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
HiTeX Press (Verlag)
978-0-00-106541-3 (ISBN)
Systemvoraussetzungen
8,47 inkl. MwSt
(CHF 8,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'Feast-Spark Engineering Essentials'
Feast-Spark Engineering Essentials is a comprehensive guide that bridges the latest advances in feature engineering with production-grade machine learning operations. The book delves deep into the architectural foundations of Feast as a feature store and Apache Spark as a distributed data processing engine, offering a detailed understanding of how their integration empowers scalable, reliable ML pipelines. Readers are introduced to the critical motivations driving Feast-Spark synergy, with clear explanations of data modeling, entity design, and the practicalities of end-to-end pipeline orchestration that meet the demands of modern MLOps.
Through meticulously structured chapters, the book covers the entire feature engineering lifecycle, from creation, extraction, and transformation to advanced topics like automated validation, versioning, and drift detection. It discusses robust engineering practices for both batch and real-time ingestion, optimized transformations, and operational best practices required to build and maintain large-scale feature pipelines. Special attention is given to storage backends, high availability, resource scaling, and multi-region deployments, ensuring that enterprises can confidently implement reliable and cost-effective solutions.
Feast-Spark Engineering Essentials stands out by addressing not only technical integration but also the operational realities of security, privacy, and compliance in regulated industries. Real-world case studies and emerging patterns provide actionable insight for both engineers and architects, encompassing governance, observability, cross-team collaboration, and the future evolution of feature store technology. The book is an indispensable resource for anyone building, operating, or scaling feature engineering infrastructure at the intersection of data and machine learning.

Chapter 2
Feature Engineering Lifecycle in Feast-Spark


Unlock the full potential of machine learning by mastering the art and science of feature engineering at scale. In this chapter, we chart the sophisticated journey of raw data as it’s transformed into high-value features, validated, cataloged, and operationalized—leveraging the powerful tandem of Feast and Spark. Explore deeply technical patterns and practical strategies that ensure your feature pipelines are robust, reproducible, and ready to fuel production ML systems.

2.1 Feature Creation: Extraction, Selection, and Transformation


In large-scale machine learning pipelines, feature creation presents a critical stage that directly impacts both model accuracy and system performance. When operating within a Spark environment, the engineering of features from heterogeneous data sources must leverage distributed computing paradigms to maintain scalability while adhering to rigorous quality and relevance criteria. This section delves into sophisticated techniques for feature extraction, selection, and transformation optimized for Spark, with an emphasis on designing pipelines that integrate seamlessly with Feast for feature serving.

Extraction from Diverse Data Sources

Feature extraction begins by interfacing with varied raw data repositories, including structured databases, log files, event streams, and external APIs. Spark’s DataFrame API, coupled with Catalyst optimizer, offers a flexible abstraction enabling efficient querying and transformation regardless of source. Key design patterns involve:

  • Schema-on-Read with DataFrame Inference: Leveraging Spark’s ability to infer schemas from semi-structured files (e.g., Parquet, ORC) expedites early-stage feature definition while maintaining strong typing.
  • Unified Batch and Stream Processing: Utilization of Spark Structured Streaming enables continuous feature updates, crucial for time-sensitive applications. Complex event-time operations, windowing, and stateful aggregations facilitate extraction of temporal features.
  • Connector Abstractions for Heterogeneous Systems: Leveraging Spark’s extensible DataSource API supports connectors to object storage (S3, GCS), message brokers (Kafka), and NoSQL stores (HBase, Cassandra), enabling feature extraction without replication or data movement overhead.

Partition pruning and predicate pushdown at the source further optimize input data volume, essential when scaling to petabyte-class datasets.

Feature Selection and Filtering Patterns

High-dimensional raw data often contains noisy or irrelevant attributes that degrade model generalization and training efficiency. Within Spark, feature selection integrates statistical and heuristic strategies embedded in scalable workflows:

  • Filter Methods: Distributed computation of correlation coefficients (e.g., Pearson, Spearman), Mutual Information, and Chi-Square scores identifies statistically significant features. These computations utilize Spark MLlib’s feature statistics transformers.
  • Embedded Methods: Training lightweight surrogate models (e.g., L1-regularized logistic regression) on Spark clusters identifies features with non-zero coefficients, exploiting distributed optimization algorithms.
  • Dimensionality Reduction Techniques: Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) leverage Spark ML pipelines to generate orthogonal feature subspaces, reducing feature count without significant information loss. Methods like TruncatedSVD are well-suited for sparse input data such as high-cardinality categorical embeddings.

Automating candidate feature selection via pipeline parameter tuning and cross-validation ensures robust feature sets that generalize well across data shifts.

Complex Feature Transformations in Spark

Feature transformations encode domain knowledge and facilitate model interpretability and performance. The high expressivity of Spark SQL and DataFrame APIs enables a rich set of transformation patterns:

  • Aggregation and Window Functions: Time-series and session-based features require sophisticated aggregation such as sliding windows, sessionization, and event counting. Spark’s window functions permit efficient expression of these patterns in a distributed manner.
  • Feature Crosses and Embeddings: Creation of joint categorical features through hashing or concatenation enriches representational capacity. Spark’s transformer API supports vector assemblers and feature hashers for converting high-cardinality interactions into fixed-size numerical representations.
  • Normalization and Scaling: Standardization, Min-Max scaling, and Quantile transformation implemented via Spark ML pipelines provide best practices for numerical feature conditioning, improving convergence of gradient-based learners.
  • Handling Missing Values and Outliers: Imputation strategies using Spark’s Imputer or custom aggregations fill missing data based on statistical or domain-driven methods. Outlier detection and capping ensure resilient feature distributions.

Chaining transformers in Spark facilitates the creation of modular, reusable transformation sequences, which can be scheduled and monitored effectively across production clusters.

Preparing Features for Feast Ingestion

Integration with Feast—an open-source feature store—is essential for operationalizing features in online and batch serving environments. Preparing data for Feast ingestion demands careful attention to schema alignment, temporal consistency, and performance optimization:

  • Entity Key Enforcement: Features must be associated with well-defined entity keys, ensuring consistent joins during online serving. Spark workflows implement strict schema validation and enrichment steps to maintain alignment.
  • Timestamping and Event Time Semantics: Embedding event-time metadata and maintaining feature freshness are paramount. Spark Structured Streaming’s watermarking capabilities help manage late-arriving data and feature staleness.
  • Feature Materialization and Partitioning: Feature data is persisted in scalable storage backends compatible with Feast, such as iceberg tables or BigQuery. Partitioning by entity identifiers and timestamps promotes efficient retrieval and incremental updates.
  • Serialization and Format: Parquet and Avro formats combined with schema evolution support streamline the ingestion pipeline, minimizing overhead during real-time feature queries.
  • Metadata and Lineage Tracking: Enhancing Spark pipelines with audit logs and versioned feature manifests aids Feast in tracking feature provenance, essential for compliance and reproducibility.

Performance profiling and resource tuning in Spark clusters ensure that feature computation pipelines meet latency requirements for real-time model consumption.

Scalability and Efficiency Considerations

Achieving scale and efficiency in feature creation necessitates a holistic approach encompassing algorithmic design and cluster resource management:

  • Lazy Evaluation and Caching: Leveraging Spark’s Catalyst optimizer and intelligent storage-level caching (StorageLevel.MEMORY_AND_DISK) minimizes data shuffling and repetition of expensive computations.
  • Broadcast Joins for Small Dimension Tables: Utilizing broadcast joins in Spark reduces costly shuffle operations when joining large feature tables with relatively small dimension datasets (e.g., entity metadata).
  • Vectorized UDFs and Code Generation: Adoption of Spark’s vectorized pandas UDFs and Tungsten project code generation accelerates feature transformation functions beyond standard Scala or Python UDFs.
  • Dynamic Resource Allocation and Autoscaling: Configuring Spark clusters for dynamic executor allocation and adaptive query execution adjusts resource utilization in response to workload variability.
  • Incremental and Streaming Feature Computation: Architecting feature pipelines to support incremental computation and real-time updates reduces recomputation costs and supports freshness SLAs.

Integrating these strategies ensures a robust, maintainable, and responsive feature engineering system capable of supporting diverse, evolving machine learning workloads.

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler, PCA, StandardScaler}...

Erscheint lt. Verlag 24.7.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-00-106541-6 / 0001065416
ISBN-13 978-0-00-106541-3 / 9780001065413
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 871 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95