Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
QuickSight Essentials -  Richard Johnson

QuickSight Essentials (eBook)

Definitive Reference for Developers and Engineers
eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
HiTeX Press (Verlag)
978-0-00-106455-3 (ISBN)
Systemvoraussetzungen
8,45 inkl. MwSt
(CHF 8,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'QuickSight Essentials'
Unlock the full potential of AWS QuickSight with 'QuickSight Essentials,' a comprehensive guide for analytics professionals, architects, and data leaders seeking to master cloud-native business intelligence. This book offers unparalleled depth, starting with the foundational architecture of QuickSight and covering everything from the SPICE engine internals and AWS integrations to best practices for high availability, security, and scalability. Readers will gain intimate familiarity with QuickSight's networking, service editions, and seamlessly integrated AWS ecosystem, ensuring robust, enterprise-ready deployments.
Moving beyond the foundations, 'QuickSight Essentials' dives into advanced data connectivity, governance, and preparation. Discover how to securely connect to diverse data sources-on-premises and in the cloud-while implementing fine-grained data access controls and comprehensive auditing for regulatory compliance. The book explores state-of-the-art techniques for data modeling, preparation, and performance tuning, empowering readers to work with structured and semi-structured data at scale. Through practical guidance on metadata management, lineage, and real-time data refresh, you'll be equipped to drive accurate, high-performance analytics.
At its core, this essential resource bridges theory with actionable practice-covering advanced visualization, parameterization, automation via DevOps, and embedded analytics for productized BI solutions. Learn to optimize costs, scale resources efficiently, and extend QuickSight through custom integrations and AI enhancements. With dedicated chapters on compliance, operational excellence, and future trends such as generative AI and sustainability analytics, 'QuickSight Essentials' provides a holistic blueprint for building resilient, modern analytics solutions and democratizing insights across your organization.

Chapter 2
Data Connection, Access, and Governance


Delve into the sophisticated world of data connectivity and governance that underpins every successful analytics project. In this chapter, unlock the mechanics of securely connecting to rich, diverse data sources—both on-premises and in the cloud—while mastering the techniques that ensure only the right people access the right data at the right time. Discover the pillars of auditability, trust, and control that transform raw data connections into a foundation for confident, compliant, and enterprise-ready analytics.

2.1 Advanced Data Source Connectivity


Connecting Amazon QuickSight to diverse data sources requires a comprehensive understanding of multiple integration paradigms, authentication mechanisms, and network configurations. This section explicates advanced techniques for establishing robust and secure connectivity with an extensive spectrum of data repositories, including JDBC/ODBC-driven databases, direct query interfaces, API-based sources, and on-premises or hybrid infrastructure environments. Methodical configuration and best practices for each connection type optimize performance, security, and maintainability.

QuickSight supports standard JDBC (Java Database Connectivity) and ODBC (Open Database Connectivity) protocols for linking relational and non-relational databases. These interfaces necessitate the installation and correct configuration of appropriate drivers while ensuring network accessibility.

Configuration begins with selecting the database engine (e.g., PostgreSQL, MySQL, Oracle, Microsoft SQL Server), followed by specifying connection parameters such as hostname, port, database name, and credentials. QuickSight allows the registration of new data sources via the AWS Management Console or AWS CLI, where JDBC/ODBC connections are defined.

Authentication models vary by data source but typically involve SQL login credentials or IAM database authentication tokens. It is crucial to encrypt credentials using AWS Secrets Manager, enabling secure retrieval during runtime and reducing exposure risks.

Connections using JDBC/ODBC frequently benefit from connection pooling to optimize resource utilization and reduce latency. However, QuickSight manages connection lifecycles internally; thus, careful monitoring of query timeouts and session limits on the database server is essential.

aws quicksight create-data-source /
--aws-account-id 123456789012 /
--data-source-id my-postgresql-source /
--name "PostgreSQL Data Source" /
--type POSTGRESQL /
--credentials ’{
"CredentialPair": {
"Username": "dbuser",
"Password": "mypassword"
}
}’ /
--data-source-parameters ’{
"Host": "db.example.com",
"Port": 5432,
"Database": "sales_db"
}’ /
--region us-east-1

For troubleshooting connection failures, verify the network reachability of the target endpoint, confirm firewall rules permit QuickSight IP ranges, and ensure that the database user permissions align with required query privileges. Employ QuickSight’s query diagnostics and database logs to pinpoint authentication or syntax issues.

Direct querying in QuickSight facilitates real-time data retrieval without full data ingestion, which is critical for operational reporting on volatile or large datasets. This mode, known as SPICE (Super-fast, Parallel, In-memory Calculation Engine) refresh bypassed, relies heavily on the performance and availability of the underlying data source.

To enable direct queries, QuickSight must be configured with appropriate credentials and connection strings identical to those used for JDBC/ODBC. However, query execution is dispatched live during dashboard usage. The data source must support ad-hoc query execution, and the network configuration must minimize latency to avoid impeding user experience.

Best practices promote limiting the data volume per query via filters and aggregations to reduce execution delays. Additionally, setting query timeout thresholds guards against long-running requests that could degrade service responsiveness.

Authentication for direct queries follows the data source’s native model but also must align with QuickSight’s user roles and permissions, ensuring data security and governance.

Beyond traditional database connections, QuickSight can ingest data via APIs, either through custom connectors or AWS Glue and Lambda-based extraction workflows. This method is essential for connecting to web services, RESTful APIs, or SaaS platforms that lack conventional database interfaces.

Developers implement ETL (Extract, Transform, Load) pipelines that invoke APIs, process JSON, XML, or other payload formats, and deposit structured datasets into Amazon S3 or directly into data lakes. QuickSight then ingests from these storage backends, preserving data freshness through scheduled refresh cycles.

Securing API integrations involves implementing OAuth tokens, API keys, or mutual TLS authentication within the ETL layer. Credential rotation and secure storage in AWS Secrets Manager underpin resilient security postures.

import boto3
import requests

def fetch_and_store(api_url, s3_bucket, s3_key):
response = requests.get(api_url, headers={"Authorization": "Bearer MY_TOKEN"})
response.raise_for_status()
data = response.json()

s3_client = boto3.client(’s3’)
s3_client.put_object(Bucket=s3_bucket, Key=s3_key, Body=str(data))

fetch_and_store("https://api.example.com/data", "my-quicksight-bucket", "api-data.json")

Testing API connectivity involves verifying endpoint accessibility, handling rate limits, and parsing responses correctly. Logging failures at each ETL stage facilitates rapid troubleshooting.

Integrating QuickSight with on-premises systems or hybrid cloud deployments introduces network complexity and security considerations. Amazon QuickSight addresses this via AWS Direct Connect, AWS Site-to-Site VPN, or AWS PrivateLink to establish secure, low-latency connectivity between AWS and corporate networks.

To enable QuickSight to access on-premises databases, organizations deploy the AWS Data Gateway or configure Virtual Private Cloud (VPC) endpoints in conjunction with private subnets containing database resources. This approach restricts exposure to the public internet and enforces security policies.

Authentication in such environments often leverages enterprise identity providers via SAML 2.0 or Active Directory Federation Services (ADFS) integrated with AWS IAM. Transparent encryption in transit using TLS ensures data confidentiality during query execution.

A critical configuration step is registering the on-premises data source with QuickSight, specifying network parameters that permit communication through NAT gateways or proxy servers if applicable.

 

Troubleshooting hybrid connectivity involves validating VPN or Direct Connect tunnel health, confirming DNS resolution from QuickSight to on-premises hosts, and auditing IAM policies that control data source access. Additionally, regular network path performance monitoring helps sustain consistent query throughput.

  • Credential Management: Always utilize AWS Secrets Manager or AWS Systems Manager Parameter Store to handle credentials securely rather than hardcoding sensitive information.
  • Least Privilege Principle: Assign minimal database privileges necessary for QuickSight queries to mitigate risk exposure in case of credential compromise.
  • Network Security: Leverage VPC endpoints, encryption in transit (TLS), and tightly scoped security groups to isolate and protect data connections.
  • Connection Validation: Before production deployment, perform connection validation tests including latency measurements, query timeouts, and failure recovery...

Erscheint lt. Verlag 8.6.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-00-106455-X / 000106455X
ISBN-13 978-0-00-106455-3 / 9780001064553
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 747 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95