Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
CatBoost Algorithms and Applications -  Richard Johnson

CatBoost Algorithms and Applications (eBook)

Definitive Reference for Developers and Engineers
eBook Download: EPUB
2025 | 1. Auflage
250 Seiten
HiTeX Press (Verlag)
978-0-00-106448-5 (ISBN)
Systemvoraussetzungen
8,45 inkl. MwSt
(CHF 8,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

'CatBoost Algorithms and Applications'
'CatBoost Algorithms and Applications' offers a comprehensive and rigorous exploration of one of the most advanced gradient boosting frameworks in modern machine learning. The book begins with a deep dive into the mathematical foundations of CatBoost, dissecting key techniques such as ordered boosting, sophisticated handling of categorical variables, robust overfitting prevention, and the formal structure of symmetric trees. It unpacks CatBoost's internal mechanics, guiding the reader through the algorithm's entire processing pipeline, memory and GPU optimizations, permutation policies, and extensibility for custom objectives - equipping practitioners with both theoretical mastery and practical insight.
Building on these foundations, the book delves into advanced topics critical for real-world applications, including feature engineering, multimodal data integration, hyperparameter optimization, and automated machine learning workflows. Special emphasis is placed on model interpretability, fairness, and explainability, with dedicated chapters on SHAP values, bias assessment, model debugging, and governance-all vital for deploying responsible AI solutions. Readers will also learn to harness CatBoost at scale, with detailed architectures for distributed training, cloud deployment, resource management, and resilient production systems that support low-latency, high-throughput inference.
Enriched with practical case studies, best practices, and guidance for emerging domains like time series forecasting and text data, 'CatBoost Algorithms and Applications' culminates in an analysis of the latest research, current challenges, and the future trajectory of CatBoost in federated, privacy-preserving, and responsible machine learning. Designed for data scientists, engineers, and researchers, this book serves as both a definitive technical reference and a strategic resource for leveraging CatBoost to solve complex, enterprise-scale machine learning problems.

Chapter 1
Mathematical Foundations of CatBoost


Unlock the theoretical engine behind CatBoost and discover what makes it different from classic boosting models. This chapter illuminates the core mathematical principles that empower CatBoost’s outperformance: from its unique ordered boosting and categorical variable strategies to state-of-the-art leak prevention and regularization. Dive deep into the formal structures and see how CatBoost tames overfitting while achieving world-class accuracy—on both familiar and complex datasets.

1.1 Principles of Gradient Boosted Decision Trees


Gradient boosting is a powerful ensemble technique founded on the idea of building an additive model by sequentially fitting weak learners to the residuals of prior models. The theoretical framework of gradient boosted decision trees (GBDTs) integrates concepts from function approximation, numerical optimization, and statistical learning, producing robust predictive models from simple base learners.

At its core, the boosting procedure constructs an additive model of the form

where each hm(x) is a weak learner-typically a decision tree of limited depth-that contributes a small improvement to the overall prediction, and γm are corresponding weights or step sizes. The data x

Erscheint lt. Verlag 3.6.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 0-00-106448-7 / 0001064487
ISBN-13 978-0-00-106448-5 / 9780001064485
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 1,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95
Apps programmieren für macOS, iOS, watchOS und tvOS

von Thomas Sillmann

eBook Download (2025)
Carl Hanser Verlag GmbH & Co. KG
CHF 40,95