Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Discrete Mathematics for Data Science - Jack Pope

Discrete Mathematics for Data Science

(Autor)

Buch | Softcover
374 Seiten
2026
Chapman & Hall/CRC (Verlag)
978-1-032-68773-5 (ISBN)
CHF 92,50 inkl. MwSt
  • Noch nicht erschienen (ca. März 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Discrete Mathematics for Data Science provides an early course in both Data Science and Discrete Mathematics, focusing on how a deeper understanding of the former can unlock a more effective implementation of the latter. Students of Data Science come from a variety of disciplines, with Business, Statistics, Computer Science, Economics, and Psychology among the departments offering courses on the subject. Therefore, for many students, Data Science is considered a means of insight into a particular field of interest, with the study of its underlying discrete mathematics not a primary objective.

This book covers the topics of Discrete Mathematical Structures relevant to students of Data Science, offering a relevant and gentle introduction to both the theoretical and practical elements required to be a successful data scientist. The relaxed, accessible style makes it a perfect textbook for undergraduates.

Features

• Numerous exercises and examples.

• Ideal as a textbook for a Discrete Mathematics course for data science and computer science students.

• Source code and solutions provided as a supplementary resource.

Jack Pope has wrangled financial data since Big Data meant a big pile of floppy disks. He works at Investment Economics (aka, System Goats) providing system configuration, guidance, and training for organizations interested in data science infrastructure. He is also department coordinator for Computer Science and Data Science at North Hennepin Community College and chairman of the Twin Cities IEEE Computer Society.

List of Figures List of Tables Preface Section I Problem Solving. Chapter 1 Your Mind: A Programming Environment. Section II Elements. Chapter 2 Atoms & Abstractions. Chapter 3 Numbers. Chapter 4 Number Conversion. Chapter 5 Digital Arithmetic & Logic. Section III Computational Logic. Chapter 6 Propositional Logic. Chapter 7 Set Quantification. Chapter 8 Proof. Chapter 9 Computability. Section IV Functions. Chapter 10 Functions & Abstractions. Chapter 11 Repetition & Recursion. Chapter 12 Lambda Calculus. Chapter 13 Algorithm Complexity. Section V Data Organization. Chapter 14 Data Organization. Chapter 15 Unconnected Data. Chapter 16 Linear Structures. Chapter 17 Branched Structures. Section VI Data Analysis. Chapter 18 Counting: Permutations & Combinations. Chapter 19 Probability & Statistics. Chapter 20 Multivariate Analysis. Chapter 21 Resampling. Chapter 22 Information Theory. Chapter 23 Data Dimensions. Section VII Appendix Appendix A. Appendix B. Appendix C.

Erscheint lt. Verlag 31.3.2026
Zusatzinfo 16 Tables, black and white; 72 Line drawings, black and white; 72 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik
ISBN-10 1-032-68773-8 / 1032687738
ISBN-13 978-1-032-68773-5 / 9781032687735
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen …

von Klaus Finkenzeller

Buch (2023)
Hanser (Verlag)
CHF 125,95
das umfassende Handbuch

von Marc Marburger

Buch | Hardcover (2024)
Rheinwerk (Verlag)
CHF 69,85