Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Vector Databases - Nitin Borwankar

Vector Databases

A Practical Introduction

(Autor)

Buch | Softcover
250 Seiten
2026
O'Reilly Media (Verlag)
978-1-0981-7759-1 (ISBN)
CHF 97,35 inkl. MwSt
  • Noch nicht erschienen (ca. April 2026)
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
In this hands-on guide, author Nitin Borwankar takes you through the "why, what, and how" of vector databases, starting with the basic theory behind vector embeddings and progressing to building applications with real-world tools. 
The AI revolution is here, and at its core lies a game-changing technology that most developers haven't fully explored: vector databases. From powering semantic search to enabling large language models (LLMs) and generative AI, vector databases are reshaping how we build applications with unstructured data like text, images, and audio. But how do you go from curious to capable with this vital technology? That's where this book comes in.In this hands-on guide, author Nitin Borwankar takes you through the "why, what, and how" of vector databases, starting with the basic theory behind vector embeddings and progressing to building applications with real-world tools. You'll learn about Word2vec, how to convert open source SQL databases like SQLite3 and PostgreSQL into vector databases, and integrate them into retrieval-augmented generation (RAG) applications. Whether you're a Python developer, data engineer, or ML practitioner, this book gives you the foundation to leverage vector databases confidently in your AI projects.



Understand the connection between vector databases, embeddings, and LLMs
Learn practical approaches for transforming SQL databases into vector databases
Build RAG applications for both personal and enterprise use
Apply vector databases to solve real-world AI challenges
Learn how to use vector databases with LLMs to build applications

Nitin Borwankar is a seasoned data scientist and database professional with a background in the development and implementation of enterprise data solutions. With a career spanning over three decades, Nitin is known for his work on data science education, advocacy for the use of open-source tools for data science, and contributions to open-source machine learning curriculum. He is a frequent speaker at conferences and approaches AI and LLMs from a pragmatic data application perspective.

Erscheint lt. Verlag 21.4.2026
Verlagsort Sebastopol
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
ISBN-10 1-0981-7759-2 / 1098177592
ISBN-13 978-1-0981-7759-1 / 9781098177591
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung mit Python, Scikit-Learn und TensorFlow

von Oliver Zeigermann; Chi Nhan Nguyen

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 27,85
Von den Grundlagen bis zum Produktiveinsatz

von Anatoly Zelenin; Alexander Kropp

Buch (2025)
Hanser (Verlag)
CHF 69,95