Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
G-Complete Reducibility, Geometric Invariant Theory and Spherical Buildings - Michael Bate, Benjamin Martin, Gerhard Röhrle

G-Complete Reducibility, Geometric Invariant Theory and Spherical Buildings

Buch | Softcover
X, 313 Seiten
2026
Springer International Publishing (Verlag)
978-3-032-08865-9 (ISBN)
CHF 82,35 inkl. MwSt
  • Noch nicht erschienen - erscheint am 23.01.2026
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

The aim of this textbook is to introduce readers at a graduate level to G-complete reducibility and explain some of its many applications across pure mathematics. It is based on the Oberwolfach Seminar of the same name which took place in 2022.

The notion of G-complete reducibility for subgroups of a reductive algebraic group is a natural generalisation of the notion of complete reducibility in representation theory. Since its introduction in the 1990s, complete reducibility has been widely studied, both as an important concept in its own right, with applications to the classification and structure of linear algebraic groups, and also as a useful tool with applications in representation theory, geometric invariant theory, the theory of buildings, and number theory.

The authors Michael Bate, Benjamin Martin and Gerhard Röhrle have a longstanding collaboration and friendship (20 years and counting). Together they have written 20 papers in and around this subject area, with a lasting impact on the field of algebraic groups (including subgroup structure, representation theory, geometric invariant theory, spherical buildings) and applications to other areas such as metric geometry and number theory.

Chapter 1. Introduction.- Chapter 2. Preliminaries.- Chapter 3. Geometric invariant theory.- Chapter 4. G-complete reducibility: first definitions and properties .- Chapter 5. The geometric approach.- Chapter 6. Finiteness, rationality and rigidity results .- Chapter 7. The spherical building of G .- 162 Chapter 8. The optimality formalism.- Chapter 9. Applications to G-complete reducibility .- Chapter 10. Large versus small characteristic .- Chapter 11. G-complete reducibility over an arbitrary field .- Chapter 12.Chapter 12. Variations, applications and future directions .- Chapter 13. Solutions to Exercises.- Bibiliography.- Index.

Erscheinungsdatum
Reihe/Serie Oberwolfach Seminars
Zusatzinfo X, 313 p. 4 illus.
Verlagsort Cham
Sprache englisch
Maße 168 x 240 mm
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Cocharacter-closed Orbit • G-complete Reducibility • Geometric invariant theory • Optimality • reductive group • spherical building • Tits Centre Conjecture
ISBN-10 3-032-08865-8 / 3032088658
ISBN-13 978-3-032-08865-9 / 9783032088659
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
a history of modern trigonometry

von Glen Van Brummelen

Buch | Softcover (2025)
Princeton University Press (Verlag)
CHF 34,90