Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
MongoDB Made Easy -  Sankar Srinivasan

MongoDB Made Easy (eBook)

A Beginner's Guide to NoSQL and Modern Data Management
eBook Download: EPUB
2025 | 1. Auflage
130 Seiten
Sankar Srinivasan FA (Verlag)
978-0-00-105095-2 (ISBN)
Systemvoraussetzungen
4,49 inkl. MwSt
(CHF 4,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Are you curious about how modern apps like e-commerce stores, social networks, and mobile games handle huge amounts of data?
Welcome to MongoDB Made Easy, your friendly, step-by-step beginner's guide to one of the world's most popular NoSQL databases.


This book is written in simple, easy-to-follow English with real-life examples and hands-on projects, so you don't need to be a database wizard to understand it. Whether you're a student, developer, or tech enthusiast, this guide will help you move from 'What is MongoDB?' to 'I can build apps with MongoDB!' in no time.


✅ Inside You Will Learn:


What makes NoSQL databases different from traditional SQL


How to install and set up MongoDB on your computer


CRUD operations (Create, Read, Update, Delete) explained with examples


How to design schemas and data models that scale


Using indexes and improving query performance


The powerful Aggregation Framework for real-world analytics


How to work with geospatial data (like maps and locations)


Practical projects: Blog CMS, E-commerce backend, Chat app, Analytics dashboard


Deploying MongoDB on the cloud with MongoDB Atlas


Best practices for security, backup, and scaling


Part 2: Intermediate MongoDB Skills


Chapter 5: Schema Design and Data Modeling


MongoDB is like a magic diary where you can write anything you want, however you want. But even magic needs a bit of order, or things can get messy. That’s where schema design and data modeling come into play. In this chapter, we’ll walk through these concepts in a way so simple, even your grandma could build a NoSQL app!

What is Schema Design?

Imagine you’re starting a collection of comic books. Would you throw all your comics into a big box without any labels or categories? Of course not! You’d probably organize them by title, author, or genre. Schema design is just that—a way to organize data in MongoDB so that it makes sense.

But wait! MongoDB is schema-less, right? That’s true. MongoDB lets you throw anything into your collections. But unless you want your database to turn into digital spaghetti, it’s better to plan your schema.

Schema design is the blueprint for how your data will be stored. It’s about deciding:

● What kind of data will go where
● Which fields go into which document
● Whether we should embed or reference other documents

Let’s go through this step-by-step, with examples and jokes to make it fun.

Meet Our Imaginary App: SuperPets

Let’s say you’re building an app called SuperPets. People can create profiles for their superhero pets, like LaserCat, ThunderDog, and InvisiHamster.

Each pet has:

● A name
● A species
● A superpower
● An owner
● A list of missions they’ve completed

How do we store this data in MongoDB? That’s where embedding vs referencing comes in.

Embedding vs Referencing

These are the two main ways to store related data:

1. Embedding (Putting It All Together Like a Burrito)

Embedding means putting all related data inside one document. It's like wrapping all the ingredients inside a tortilla—neat, compact, and easy to munch on.

Example:

{

"name": "LaserCat",

"species": "Cat",

"superpower": "Laser eyes",

"owner": {

"name": "Alice",

"email": "alice@example.com"

},

"missions": [

{"title": "Save the fishbowl", "date": "2023-04-01"},

{"title": "Chase the red dot", "date": "2023-05-15"}

]

}

Here, all the details about the pet, the owner, and their missions are embedded in one document. Easy to fetch, easy to read.

Pros of Embedding:

● Fast reads (you get all data in one go)
● Simple to query
● No need to look up other documents

Cons of Embedding:

● Data duplication (if many pets have the same owner)
● Large documents can grow too big
● Hard to update shared data (you have to update in many places)

2. Referencing (Separating Like a Bento Box)

Referencing is like keeping things in different compartments but linking them together.

Example: Pet Document:

{

"name": "LaserCat",

"species": "Cat",

"superpower": "Laser eyes",

"owner_id": "123abc",

"missions": ["m1", "m2"]

}

Owner Document:

{

"_id": "123abc",

"name": "Alice",

"email": "alice@example.com"

}

Mission Document:

{

"_id": "m1",

"title": "Save the fishbowl",

"date": "2023-04-01"

}

Pros of Referencing:

● No duplication
● Easy to update shared data
● Good for large or growing documents

Cons of Referencing:

● Requires multiple queries to fetch full data
● More complex queries
● Slower reads

When to Use What?

Situation

Go With

Why?

Owner has one or two pets

Embed

Simple, fast access

One owner has 100 pets

Reference

Avoid huge documents

Missions are unique per pet

Embed

Missions aren’t reused

Missions are shared across pets

Reference

Prevent duplication

Use embedding for:

● One-to-few relationships
● Small subdocuments
● Data that doesn’t change often

Use referencing for:

● Many-to-many relationships
● Large or frequently updated data
● Shared data across multiple documents

Types of Relationships in MongoDB

Alright, buckle up. It’s time to talk relationships. Don’t worry, not the awkward dating kind.

1. One-to-One

Each pet has exactly one collar. One collar belongs to exactly one pet.

Example: Embedded

{

"name": "LaserCat",

"collar": {

"color": "Red",

"material": "Leather"

}

}

Or Referenced (if collar is used elsewhere):

{

"name": "LaserCat",

"collar_id": "col123"

}

Use embedding unless the collar is a superstar product with its own fans.

2. One-to-Many

One owner has many pets. Or one pet has many missions.

Embed Missions:

"missions": [

{"title": "Chase squirrel", "date": "2023-06-01"},

{"title": "Bark at mailman", "date": "2023-06-02"}

]

Reference Missions (if shared):

"missions": ["m1", "m2"]

Tip: If you find yourself using phrases like "millions of missions" or "infinite pets," go with referencing.

3. Many-to-Many

Multiple pets go on multiple missions.

LaserCat and ThunderDog both saved the fishbowl.

In this case, you need referencing and maybe a separate linking collection.

Linking Collection Example:

{

"pet_id": "pet1",

"mission_id": "m1"

}

This way, you can query all missions a pet has been on or all pets involved in a mission.

Bonus: The Goldilocks Rule of Schema Design

Not too big. Not too small. Just right.

Avoid making one document so huge it can take down your app. But also avoid breaking things into 99 tiny pieces that require 99 lookups.

Ask yourself:

● Will this data grow big?
● Is this data reused?
● Is it often updated?
● Do I always need it together?

If you answer yes to “always needed together,” go with embedding.

If you answer yes to “lots of changes” or “used elsewhere,” go with referencing.

Summary: Designing Like a Pro

● Embedding is like stuffing your suitcase—everything in one place, fast to grab.
● Referencing is like carrying separate bags—organized, but takes more effort to reach.

One-to-One: Easy, embed unless reused One-to-Many: Embed small lists, reference large ones Many-to-Many: Reference with link collections

MongoDB gives you the freedom. Schema design gives you the discipline. Together, they make your app fly like SuperPets on a mission.

Next up: Indexes and Performance Tuning. (Because nobody likes a slow superhero.)

Chapter 6: Indexes and Performance Tuning


Speeding Up MongoDB Without a Cup of Coffee

Imagine you have a huge library with thousands of books. One day, your friend asks, “Hey, do you have that one book about flying squirrels?” You panic. Why? Because all your books are just piled up randomly. No titles, no labels, no sections. You'd probably say, “Come back in a week… or two.”

This, my friend, is MongoDB without...

Erscheint lt. Verlag 7.9.2025
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
ISBN-10 0-00-105095-8 / 0001050958
ISBN-13 978-0-00-105095-2 / 9780001050952
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 1,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Der Leitfaden für die Praxis

von Christiana Klingenberg; Kristin Weber

eBook Download (2025)
Carl Hanser Fachbuchverlag
CHF 48,80