Zum Hauptinhalt springen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Cartesian Cubical Model Categories - Steve Awodey

Cartesian Cubical Model Categories

(Autor)

Buch | Softcover
X, 122 Seiten
2026
Springer International Publishing (Verlag)
978-3-032-08729-4 (ISBN)
CHF 97,35 inkl. MwSt
  • Noch nicht erschienen - erscheint am 08.02.2026
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory.

Steve Awodey holds the Dean s Chair in Logic at Carnegie Mellon University, where he is Professor of Philosophy and Mathematics. A founder of Homotopy Type Theory, he co-organized a special research year on Univalent Foundations at the Institute for Advanced Study (Princeton). His numerous publications include the textbook Category Theory and the collaborative volume Homotopy Type Theory: Univalent Foundations of Mathematics. He serves on several journal editorial boards and is coordinating editor of the Journal of Symbolic Logic. He has held visiting appointments at the Poincaré Institute (Paris), Newton Institute (Cambridge), Hausdorff Institute (Bonn), and the Centre for Advanced Studies (Oslo), and is currently a Royal Society Wolfson Visiting Fellow at Cambridge University.

Chapter 1. Introduction.- Chapter 2. Cartesian cubical sets.- Chapter 3. The cofibration weak factorization system.- Chapter 4. The fibration weak factorization system.- Chapter 5. The weak equivalences.- Chapter 6. The Frobenius condition.- Chapter 7. A universal fibration.- Chapter 8. The equivalence extension property.- Chapter 9. The fibration extension property.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo X, 122 p. 180 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Abstract homotopy theory • Constructive Type Theory • Cubical sets • homotopical algebra • Homotopy Type theory • Quillen model categories • Synthetic homotopy theory • topos theory • Univalence axiom • Univalent type theory
ISBN-10 3-032-08729-5 / 3032087295
ISBN-13 978-3-032-08729-4 / 9783032087294
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
a history of modern trigonometry

von Glen Van Brummelen

Buch | Softcover (2025)
Princeton University Press (Verlag)
CHF 34,90